This function creates an object of class BiCop
and checks for
family/parameter consistency.
BiCop(family, par, par2 = 0, tau = NULL, check.pars = TRUE)
An integer defining the bivariate copula family: 0
= independence copula 1
= Gaussian copula 2
= Student t copula (t-copula) 3
= Clayton copula 4
= Gumbel copula 5
= Frank copula 6
= Joe copula 7
= BB1 copula 8
= BB6 copula 9
= BB7 copula 10
= BB8 copula 13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'') 16
= rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees;
survival BB1'')18
= rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees;
survival BB7'')20
= rotated BB8 copula (180 degrees; ``survival BB8'')23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)
Copula parameter.
Second parameter for bivariate copulas with two parameters (t,
BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default is par2 = 0
).
par2
should be an positive integer for the Students's t copula
family = 2
.
numeric; value of Kendall's tau; has to lie in the interval
(-1, 1). Can only be used with one-parameter families and the t copula.
If tau
is provided, par
will be ignored.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
An object of class BiCop()
. It is a list containing
information about the bivariate copula. Its components are:
copula family number and parameter(s),
number of parameters,
name of the copula family,
Kendall's tau,
Blomqvist's beta,
lower and upper tail dependence coefficients,
the call that created the object.
Objects of this class are also returned by the BiCopEst()
and
BiCopSelect()
functions. In this case, further information about
the fit is added.
For a comprehensive summary of the model, use summary(object)
;
to see all its contents, use str(object)
.
## create BiCop object for bivariate t-copula
obj <- BiCop(family = 2, par = 0.4, par2 = 6)
obj
#> Bivariate copula: t (par = 0.4, par2 = 6, tau = 0.26)
## see the object's content or a summary
str(obj)
#> List of 9
#> $ family : num 2
#> $ par : num 0.4
#> $ par2 : num 6
#> $ npars : num 2
#> $ familyname: chr "t"
#> $ tau : num 0.262
#> $ beta : logi NA
#> $ taildep :List of 2
#> ..$ lower: num 0.127
#> ..$ upper: num 0.127
#> $ call : language BiCop(family = 2, par = 0.4, par2 = 6)
#> - attr(*, "class")= chr "BiCop"
summary(obj)
#> Family
#> ------
#> No: 2
#> Name: t
#>
#> Parameter(s)
#> ------------
#> par: 0.4
#> par2: 6
#> Dependence measures
#> -------------------
#> Kendall's tau: 0.26
#> Upper TD: 0.13
#> Lower TD: 0.13
#>
## a selection of functions that can be used with BiCop objects
simdata <- BiCopSim(300, obj) # simulate data
BiCopPDF(0.5, 0.5, obj) # evaluate density in (0.5,0.5)
#> [1] 1.185466
plot(obj) # surface plot of copula density
contour(obj) # contour plot with standard normal margins
print(obj) # brief overview of BiCop object
#> Bivariate copula: t (par = 0.4, par2 = 6, tau = 0.26)
summary(obj) # comprehensive overview of BiCop object
#> Family
#> ------
#> No: 2
#> Name: t
#>
#> Parameter(s)
#> ------------
#> par: 0.4
#> par2: 6
#> Dependence measures
#> -------------------
#> Kendall's tau: 0.26
#> Upper TD: 0.13
#> Lower TD: 0.13
#>