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1 Introduction and overview

1.1 Mathematical statistics

This course is about a deep understanding of statistical methods. You have already
encountered many such methods in your studies: data summaries (like the mean,
variance, or quantiles), maximum-likelihood estimators, hypothesis tests, histograms,
regression estimators, etc. But do they even achieve what they intend, and why? Are
they biased? How accurate/certain are the results?

Let’s make this more concrete. You might have already heard that the median of a
sample X1, . . . , Xn can be estimated by

m̂ = arg min
n∑

i=1
|Xi −m|.

But why is this a good estimator? Would it at least approach the true median with
infinite data? If so, how certain can we be about the estimate? What if observations
aren’t independent or contaminated by outliers? To a certain extent, these questions
can be answered empirically. We may simulate some data, compute the median as
above, and see how it behaves. However, this only answers the question for the specific
model from which we generated the data and how we estimated the median. What
if we change the model or the estimator? We can generate more data and repeat
the experiment, but this is not feasible for every possible model and estimator. In
particular, we have not gained any understanding of why the estimator behaves the
way it does.

Mathematical statistics is all about understanding the properties of statistical
methods and deriving sound answers to the questions above in the form of mathematical
guarantees.

1.2 Aims and scope of this course

This course provides an introduction to modern mathematical statistics, emphasizing
the principles and tools essential for a profound understanding of statistical methods.
The course is intended for students who enjoy mathematics and prepares for research-
level work in methodological statistics. On a high level, this course will teach you:

• Fundamental principles of what makes a statistical method work or fail.

• Important results and concepts in mathematical statistics.

• The mathematical tools to derive them.

1



1 Introduction and overview

Specific statistical methods are discussed to illustrate the concepts and tools; most of
them should already be known from previous courses. While mathematical theory can
be fun and interesting in itself, this course has a very practical intent.

“There is nothing more practical than a good theory.” — Kurt Lewin

Understanding the fundamental mechanisms governing the behavior of statistical
methods is an invaluable asset in practice. It helps to choose the right method for a
given problem, understand its limitations, and develop new methods when needed. The
tools and concepts you learn in this course provide a general framework for analyzing
statistical methods. This is extremely helpful for developing intuition and navigating
new challenges in statistical practice.
For those considering an academic career, I feel the urge to speak about another

(possibly unpleasant) truth. If you browse through papers in the most prestigious
statistics journals1, you will find a whole lot of mathematics, theorems, and proofs.
A thorough mathematical analysis of any statistical procedure you propose is almost
mandatory for publication in these venues. That does absolutely not mean that one
cannot be a great statistician or have a lasting impact on the field without it. In
fact, quite a few researchers are annoyed by the strong emphasis on mathematics in
methodological statistics. But this emphasis grew for a reason. Essentially all methods
and recommendations we teach today are based on deep mathematical understanding
and results. This theory gives reassurance to a level that empirical studies cannot
provide. Convincing others of the validity of a new method or recommendation is much
easier if you can back it up with a solid mathematical argument.

1.3 What’s expected from you

The course is designed under the assumption that students

• already had a first course in probability theory and statistical inference,

• have a solid grasp of basic concepts in mathematical analysis (e.g., convergence,
continuity, differentiability).

It is OK if things are a bit rusty, you can catch up on the way. However, the course
will be quite challenging if you are not comfortable with these prerequisites. The
mathematical arguments in the lectures are quite advanced at times. In general,
students are not expected to develop or reproduce such advanced arguments in the
exam or exercise. Here, focus will be put on applying the main results to specific
statistical procedures and simpler derivations using the key concepts.

1.4 These notes

These lecture notes are meant to support the oral lectures during class. The notes are
more detailed than what is done in class. I will sometimes omit or shorten mathematical

1See, for example, the Google Scholar ranking.
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1 Introduction and overview

arguments and proofs if additional detail doesn’t add much to our understanding.
Sections marked with a star are considered optional and probably not covered in class.
Reading the additional details in the notes is an optional offer for interested students.
The general rule is: what we don’t discuss in class isn’t necessary for succeeding in this
course.

1.5 Outlook

1.5.1 Statistical methods

Generally speaking, a statistical method takes some observations X1, . . . , Xn from
a distribution P and computes some output Tn(X1, . . . , Xn). The output can be a
number, a vector, a function, etc. The goal is to understand the properties of the
output, depending on the properties of the data. Statistical procedures can have many
different goals and solve many different problems. Here are some simple examples:

Example 1.5.1 (Sample mean). The sample mean Tn(X1, . . . , Xn) = Xn = 1
n

∑n
i=1Xi

is a common estimator for the population mean µ = E[X]. The mean itself is a measure
of location. An alternative measure of location is the median mentioned above.

Example 1.5.2 (Sample quantiles). The sample quantile Tn(X1, . . . , Xn) = Q̂(α),
defined as the dnαe-smallest observation from the sample X1, . . . , Xn. Quantiles for
large or small α are often used to quantify risks, i.e., unlikely events with negative
consequences.

Example 1.5.3 (Statistical tests). A statistical test computes a test statistic Tn =
Tn(X1, . . . , Xn) to make a yes-or-no decision about a hypothesis. For example, the
t-test tests the hypothesis that the mean of a sample is equal to a given value.

Example 1.5.4 (Maximum-likelihood estimator). The maximum-likelihood estimator
(MLE) is a method that fits a parametric model to data. A parametric model is a
collection of densities {fθ : θ ∈ Θ} indexed by a parameter θ. The maximum-likelihood
estimator gives the parameter under which the observations are most likely:

Tn(X1, . . . , Xn) = θ̂MLE = arg max
θ∈Θ

n∑
i=1

ln fθ(Xi).

After finding the MLE, the fitted model can make predictions or other inferences about
the world.

Example 1.5.5 (Empirical distribution function). The empirical cumulative distribution
function (ECDF) Fn is a statistical approximation of the distribution FX of a random

3



1 Introduction and overview

variable X. It is defined as

Tn(X1, . . . , Xn) = F̂n(·) = 1
n

n∑
i=1
1{X ≤ ·}.

Note that the ECDF is a function, not a number or vector.

Example 1.5.6 (Histogram). The histogram is a statistical approximation of the
density fX of a random variable. It is defined as

Tn(X1, . . . , Xn) = f̂X(·) =
B∑

b=1
1[xb−1,xb)(·)

∑n
i=1 1[xb−1,xb)(Xi)

n
,

where x0, . . . , xB are fixed boundaries of the bins.

Example 1.5.7 (Bootstrap). The bootstrap is a procedure gauging the uncertainty of
an estimator θ̂(X1, . . . , Xn). It works by resampling the data many times and computing
the estimator on each resample. For each b = 1, . . . , B, let X(b)

1 , . . . , Xb
n be a sample

from the empirical distribution of X1, . . . , Xn. The bootstrap estimator of the sampling
variance is

Tn(X1, . . . , Xn; ξ) = σ̂2
n = 1

B

B∑
b=1

(θ̂(X(b)
1 , . . . , X(b)

n ) − θ̂(X1, . . . , Xn))2,

where ξ is some external source of randomness generating the bootstrap samples. This
estimator is often used to quantify uncertainty through confidence intervals constructed
from a normal approximation of θ̂. Other bootstrap confidence intervals based on
quantiles are also possible.

Despite their apparent differences, the methods above can be understood and analyzed
from a core set of principles. The methods are so common that we all know they are
reasonable for the problems they try to solve. But do you know why? What if I
give you a new method you haven’t seen before? How would you know if it is a good
method? And for the methods you know, are they still reasonable when the data is
heavy-tailed or non-iid? All these questions can (and have been) answered theoretically
with mathematical statistics.

1.5.2 The role of asymptotics

The statistics Tn(X1, . . . , Xn) are random quantities because they are functions of
the random sample X1, . . . , Xn. The probabilistic behavior of Tn(X1, . . . , Xn) usually
depends on the distribution of the data in a complicated way. It is often infeasible to
derive exact results about the distribution of Tn(X1, . . . , Xn), especially for complex
statistics or distributions.

A powerful technique to cope with this is asymptotic analysis. It refers to the study

4



1 Introduction and overview

of the behavior of statistical methods as the sample size n grows to infinity. The idea
is that many statistical methods become more predictable in the limit of large n. The
influence of the data distribution becomes simpler, and the method’s behavior can be
understood in an insightful way.

Consistency

For example, the sample mean Xn converges to the population mean µ as n → ∞
under mild conditions. Here, the limit does not depend at all on the data distribution,
so many of the complications of a finite-sample analysis disappear. Convergence of
a statistical method Tn to the quantity T = T (P ) it tries to estimate is known as
consistency. It is, in essence, a minimal requirement for a good statistical method.
If a method does not converge to the right quantity, it is probably not a good one.
Consistency is a very rough property, though. It only tells us that the method is not
entirely off. It does not tell us how fast the method converges or how certain we can
be about the estimate.

Asymptotic normality

Asymptotic normality results are more nuanced. They take the form

P (rn(Tn −Bn − T )/σ ≤ x) n→∞→ Φ(x),

where Φ is the standard normal distribution function, rn is some convergence rate
(often rn =

√
n), Bn is the asymptotic bias, and σ is the asymptotic variance.

Asymptotic normality tells us how fast the method converges to the target and how
much the estimates fluctuate around it. These more refined properties give us a more
detailed understanding of the method. In particular, Bn and σ usually depend on the
distribution of the data, but in a tractable and insightful way. For example, the bias
of the histogram can be shown to be large when the bins are large or the density is
erratic, and the variance is large when the bins are small or the true density is small
(= few observations in a bin). This allows us to select an appropriate number of bins
and assess how certain we can be about the estimated density values.

Limitations

Asymptotic results are powerful, but they have limitations. They only tell us about the
method’s behavior in the limit of large n. At face value, they do not reveal anything
about the behavior of the method for finite n. In fact, some methods can be proven to
be optimal asymptotically but produce complete garbage on small or moderate samples.
Luckily, asymptotic approximations are often very good, even for moderate n. Further,
the asymptotic bias and variance almost always reveal some fundamental relations
between the method and the data-generating distribution.

Not all of mathematical statistics is about asymptotics. There are many results that
hold for finite n, but they usually take the form of probabilistic bounds. Such results
are often more complicated and loose than asymptotic results. Asymptotic analysis
has proven to be the most effective and insightful tool for understanding statistical

5



1 Introduction and overview

methods, so it is the main focus of this course. Nevertheless, it is important to be
aware of its limitations and, generally, a good idea to do basic checks on the asymptotic
results via finite-sample simulations.

1.5.3 Topics

The following gives an overview of the topics we will likely cover in this course. We
may skip some topics or add others depending on time and interest.

Stochastic convergence

Asymptotic results are usually based on the concept of convergence of sample averages.
We will start with a basic study of this phenomenon, particularly the law of large
numbers and central limit theorem. There is a joke about statisticians taking averages
all day; in a sense, this is true. Many estimators can be expressed as averages; and
even when they can’t, they can often be approximated by a suitable average. This
property is called asymptotic linearity and is key to asymptotic statistics.

M-estimators

Most statistical methods can be written as so-called M-estimators. The M in M-
estimator stands for either maximum or minimum. Important examples are the
maximum-likelihood estimator or empirical risk minimizers. We will study the general
properties of M-estimators, such as consistency, asymptotic normality, and efficiency.

Robust statistics

Robust statistics deals with statistical methods that aren’t affected too much by outliers.
For example, the median is a robust estimator of location because it remains reliable
even if a significant portion of the data is contaminated. We will discuss the basic
principles of robustness, such as breakdown point and influence function, and introduce
robust estimators that provide reliable results even in the presence of outliers or model
misspecification.

Plug-in estimators

Plug-in estimators involve estimating a functional of the distribution by plugging in an
estimator of the distribution itself. This approach is commonly used in non-parametric
statistics and machine learning for tasks like density estimation and regression function
estimation. For example, to estimate the entropy of a distribution, one could use the
empirical distribution function to plug into the entropy formula, yielding a plug-in
estimator of the entropy. More generally, almost all statistical procedures can be cast
as functionals of the empirical distribution function. We develop some general concepts
and theoretical results for analyzing estimators through this lens

6



1 Introduction and overview

U-statistics

U-statistics are generalizations of sample averages. Instead of averaging over (functions
of) individual observations, U-statistics average over k-tuples of observations. For
example, a second-order U-statistic averages over functions of pairs of observations:

Un = 1(n
2
) ∑

i<j

h(Xi, Xj),

for some function h. Simple examples are the sample variance, the Gini coefficient, or
the Wilcoxon test statistics. Further, U-statistics often arise naturally when analyzing
more complex statistical methods, where one estimate is substituted to construct
another. Under mild conditions, U-statistics are asymptotically linear (i.e., they can
be approximated by a sample average), for which the usual laws of statistics apply.

Dependent data

Many real-world data sets involve dependent observations, such as time series or spatial
data. For example, today’s air temperature is correlated with yesterday’s temperature,
and the temperature in Munich is correlated with the temperature in Augsburg. This
conflicts with the assumption of iid data commonly made in limit theorems. We will
see that meaningful asymptotics are still possible if the dependence fades out as two
points in time or space are sufficiently far apart. In particular, we discuss the concept
of mixing and its implications for statistical inference.

1.6 Further reading

The contents, results, and proofs in these notes are selected and presented in a way that
reflects my own taste and understanding. The notes are supposed to be self-contained,
and no further reading is required. They build on several other textbooks and lecture
notes. One of the main references is the book “Asymptotic statistics” by Van der Vaart
(2000), which covers many additional topics.
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2 Stochastic convergence

We start the course with the basics. Asymptotic analysis is concerned with the
convergence of statistical methods as the sample size grows. Because the data is
random, the convergence is not deterministic but stochastic. We therefore need to
develop adequate notions of stochastic convergence and some key results that we put
in our toolbox for studying statistical methods. We’ll also use this chapter to ease
into the mathematical notation and style that we will use throughout the course. The
mathematical level in the beginning is rather elementary and should feel comfortable.
It builds up as we progress.
A bit later in the course, we will study the behavior of fairly advanced statistical

methods. To motivate and build up the tools without too much distraction, we mostly
focus on the simplest of all examples: sample averages. This may sound a bit dull, but
it really isn’t. Let’s first get a sense for why sample averages are so important.

2.1 Sample averages

Let Y1, . . . , Yn ∼ P be a sequence of iid random variables. The sample average

Y n = 1
n

n∑
i=1

Yi,

is the most common and natural estimator of the mean E[Y1]. As already mentioned
in the introduction, most estimators can at least be approximated by sample averages.
Here, the actual data is a sequence of random variables X1, . . . , Xn ∼ P and the
estimator Tn is such that

Tn(X1, . . . , Xn) ≈ 1
n

n∑
i=1

g(Xi) = 1
n

n∑
i=1

Yi,

for some function g and Yi = g(Xi). We will see this many times later in the course.
But even without such approximations, sample means are already extremely powerful.
They often come in the disguised form above (but with equality):

θ̂ = 1
n

n∑
i=1

g(Xi). (2.1)

Here are some common examples.

Example 2.1.1 (Moments). For g(x) = xk, k ∈ N, (2.1) is an estimator for the k-th
moment of X. From this, we can, for example derive estimators for the variance.

8
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Figure 2.1: The kernel density estimator in action (Example 2.1.5). Eight data points
are shown as cross on the x axis. The KDE places a bump h−1K((x −
Xi)/h)/n on each data point (dashed lines). The final estimate is the sum
of all bumps (solid line).

Example 2.1.2 (Tail probabilities). Now suppose Xi is an observed loss in an insurance
portfolio. We want to estimate the probability of a large loss, e.g., one exceeding some
risk budget r. This probability can be estimated by

θ̂ = 1
n

n∑
i=1
1{Xi > r},

which corresponds to (2.1) with g(x) = 1{x > r}.

Example 2.1.3 (Empirical distribution function). The empirical distribution function
is of the form (2.1) with g(x) = 1{Xi ≤ x}.

Example 2.1.4 (Histogram). The histogram estimator in Example 1.5.6 is of this
form. To estimate the density at a fixed point x ∈ B = [xb−1, xb), we may take
g(x) = 1{x ∈ B},

Example 2.1.5 (Kernel density estimator, KDE). Kernel density estimators are a
slightly more advanced technique to estimate densities. They are of the form (2.1) with
g(x) = h−1K((x−Xi)/h), where K is a probability density function symmetric around
zero, and h a bandwidth parameter. The kernel density estimator also counts points in
a neighborhood of x, but weights them according to the kernel. Points far away from x

count less, points close to x count more. The KDE is illustrated in Fig. 2.1.

Example 2.1.6 (Monte-Carlo integration). The Monte-Carlo method is one of the most
easy to use and powerful methods for numerically integrating some function g : Rd → R.
Let S be a bounded subset of Rd and U1, . . . , Ud iid samples from Unif(S), the uniform

9



2 Stochastic convergence

distribution on S. Then ∫
S
g(x) dx = E[g(U1)],

which can be estimated by the sample average

1
n

n∑
i=1

g(Ui).

The same idea also works for infinite integration domains. For example, let φ be the
multivariate standard normal density and X1, . . . , Xn be an iid sample from it. Then∫

Rd
g(x) dx =

∫
Rd

g(x)
φ(x)φ(x) dx = E

[
g(X1)
φ(X1)

]
,

can be estimated by the sample average

1
n

n∑
i=1

g(Xi)
φ(Xi)

.

Other densities can be used in place of φ to give more weight to regions where g is large
to make the estimator more efficient.

Example 2.1.7 (Simulation studies). Simulation studies are a useful tool for developing
and assessing statistical methods. In a simulation study, we generate many sets of iid
samples {X(m)

1 . . . , X
(m)
n }, m = 1, . . . ,M from a known distribution P and apply the

method we want to study to each sample. This gives us a sense of how the method behaves
in practice. For example, to study the bias E[θ̂] − θ of an estimator θ̂ = T (X1, . . . , Xn),
we can compute

θ̂(m) = T (X(m)
1 , . . . , X(m)

n )

for each sample m = 1, . . . ,M , and compare their average

1
M

M∑
m=1

θ̂(m)

to the true value θ. The estimator’s mean-squared error MSE = E[(θ̂ − θ)2] can be
estimated by

1
M

M∑
m=1

(θ̂(m) − θ)2.

I hope you’re convinced by now that studying sample averages more deeply is
worthwhile.

10



2 Stochastic convergence

2.2 Convergence in probability and consistency

2.2.1 Convergence in probability

In many of the above examples, it was taken for granted that the sample average Y n

is a good estimator of the mean E[Y1]. But what do we mean by that? Well, we
know that the sample average Y n approaches E[Y1] somehow as we gather enough data.
There are several ways to express this more precisely. For statistical applications, the
most relevant one is convergence in probability.

Definition 2.2.1 (Convergence in probability). Let Y, Y1, Y2, . . . ∈ Rd be random
vectors. We say that Yn converges to Y in probability or Yn →p Y , if for every ε > 0,

lim
n→∞

P
(
‖Yn − Y ‖ > ε

)
= 0.

In plain words, Yn →p Y means: as n → ∞, the probability that Yn is ε away from Y

goes to 0. You could also write the definition the other way around: for every ε > 0,

lim
n→∞

P
(
‖Yn − Y ‖ ≤ ε

)
= 1.

The variables Yn and Y become arbitrarily close to each other with probability going
to 1. The general definition above involves a random variable Y as the limit. In most
cases of interest, the limit Y is actually a constant (i.e., a random vector with zero
variance).

2.2.2 The law of large numbers

Now we’re all set to state what I like to call the fundamental theorem of statistics.

Theorem 2.2.2 (The law of large numbers, LNN). Let X1, . . . , Xn ∈ Rd be iid
random vectors with maxj E[X2

1,j ] < ∞ and define Xn = 1
n

∑n
i=1Xi. Then

Xn →p E[X1].

While we can’t know E[X1], Xn is something we observe. The LNN implies that the
sample mean Xn is a reasonable approximation of µ. Hence, Xn gives us a “feeling”
what the actual mean µmight be. The LNN makes this intuition mathematically precise.
It allows us to learn about the expected value of an unknown random mechanism just
from seeing the data.

Example 2.2.3. Let’s illustrate the LLN with a small experiment: We simulate
X1, . . . , Xn ∼ Bernoulli(0.5) and compute Xn for each n. We repeat this experiment
five times. By the law of large numbers, we expect the five resulting sequences to
converge to the expected value E[X1] = 0.5. The results are shown in Figure 2.2. Each
line (color) corresponds to a sequence X1, X2, X3, . . . , one line for each repetition of
the experiment. We see that for small n, Xn can be quite far away from the mean. As

11
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Figure 2.2: The law of large numbers in action (Example 2.2.3). Each line corresponds
to a sequence Xn after simulating from n iid Bernoulli(0.5) random
variables.

we increase the amount of data, all three lines seem to stabilize around 0.5. However,
the three lines are different, reflecting the randomness of the samples. The green line
lies mainly above 0.5, the others mainly below. The LLN states that, despite this
randomness, it becomes less and less likely that one of the lines ends up away from 0.5.

Remark 2.2.4. The result in Theorem 2.2.2 is sometimes called weak law of large
numbers, because there is a strong version that employs a different notion of convergence.
More on that later.

2.2.3 Proof using Markov’s inequality

The assumption maxj E[X2
1,j ] < ∞ in Theorem 2.2.2 is slightly stronger than necessary.

While E[|X1,j |] < ∞ is sufficient, our stronger assumption is OK in 99.9% of applications
and greatly simplifies the proof. The (optional) proof under the weaker condition is given
at the end of this chapter. The simpler proof only requires a simple, but fundamental
probabilistic inequality.

Theorem 2.2.5 (Markov’s inequality). For any real-valued random variable Y ≥ 0
and t > 0,

P(Y ≥ t) ≤ E[Y ]
t

.

Proof. We calculate

E[Y ] =
∫ ∞

0
ydP (y) ≥

∫ ∞

t
ydP (y) ≥ t

∫ ∞

t
dP (y) = tP(Y ≥ t).

The theorem is more powerful than it may look at first sight. Other than being
non-negative the random variable Y is arbitrary.

12



2 Stochastic convergence

Proof of Theorem 2.2.2. Let Yn = Xn − E[X1] and note that E[Yn] = 0. It holds

P(‖Xn − E[X1]‖ > ε)
= P(‖Xn − E[X1]‖2 > ε2) [g(x) = x2 strictly increasing for x ≥ 0]

≤ E[‖Xn − E[X1]‖2]
ε2 [Markov’s inequality]

=
∑d

k=1E[(Xn,k − E[X1,k])2]
ε2

=
∑d

k=1Var[Xn,k]
ε2 .

Now,

Var[Xn,k] = Var
[

1
n

n∑
i=1

Xi,k

]
= 1
n2

n∑
i=1

n∑
j=1

Cov[Xi,k, Xj,k]

= 1
n2

n∑
i=1
Var[Xi,k] [independence of Xi,k’s]

= 1
n
Var[X1,k]. [identical distribution]

Because maxkVar[X1,k] ≤ maxk E[X2
1,k] < ∞, we have

P(‖Xn − E[X1]‖ > ε) ≤
∑d

k=1Var[Xn,k]
ε2 = 1

n

∑d
k=1Var[X1,k]

ε2
n→∞→ 0,

for every ε > 0. This proves Xn →p E[X1].

2.2.4 Estimators and consistency

The statement “Xn is a good approximation of E[X1]” is made mathematically precise
by Xn →p E[X1]. In that case, we say that Xn is a consistent estimator for E[X1]. Let
us put this in a slightly more abstract setting.

Definition 2.2.6 (Estimator). If X1, . . . , Xn is our data, any quantity that can be
expressed as Tn(X1, . . . , Xn) for some function Tn is called an estimator.

Less formally, an estimator is any quantity that you compute from data.

Definition 2.2.7 (Consistency). Let θ be an unknown quantity that we are interested
in. An estimator θ̂n is called consistent for θ if

θ̂n →p θ.

In particular, θ̂n = Xn is a consistent estimator for θ = E[X]. This now applies
in a straightforward way to the examples provided in Section 2.1. In case of the
empirical distribution function, the histogram, and the kernel density estimator, we

13



2 Stochastic convergence

are actually estimating functions instead of numbers. For example, the empirical
distribution function F̂n from Example 1.5.5 is an estimator of a function. The LLN in
Theorem 2.2.2 implies pointwise consistency

F̂n(x) →p E[1{X ≤ x}] = F (x).

It does not imply consistency of the entire function with respect to the sup-metric
supx |F̂n(x) − F (x)|. There are, in fact, methods that are pointwise consistent but not
uniformly consistent (i.e., consistent with respect to the sup-metric). The ECDF is
also uniformly consistent, but this is a more advanced result that we will cover in a
few weeks. Nevertheless, this illustrates that consistency is a concept intimately linked
to the choice of metric.

2.2.5 Some useful facts and tools

We close this section with some useful tools. The first is about the convergence of
tuples of random vectors.

Lemma 2.2.8 (Convergence in product spaces). Let Y, Y1, Yn, · · · ∈ Rd and
X,X1, . . . , Xn ∈ Rp be sequences of random vectors. If Yn →p Y and Xn →p X,
then (Yn, Xn) →p (Y,X).

Proof. Exercise.

Another useful tool is the continuous mapping theorem. It allows us to deduce
convergence of functions of random variables from the convergence of the random
variables themselves. Recall that a function g : Rd → Rq is continuous if ‖y1 − y2‖ → 0
implies ‖g(y1) − g(y2)‖ → 0.

Theorem 2.2.9 (Continuous mapping theorem). Let Yn →p Y and g : Rd → Rq be
continuous everywhere on a set S with P(Y ∈ S) = 1. Then g(Yn) →p g(Y ).

Proof. Fix ε > 0. We want to control the probability of the event {‖g(Yn)−g(Y )‖ > ε}.
We split this event into two parts: one where Yn is far away from Y (this is unlikely
because Yn →p Y ), and one where Yn is close to Y but g(Yn) is far away from g(Y )
(this is unlikely because g is continuous). Define the set

Sδ,ε = {y : S : ∃y′ : ‖y − y′‖ < δ, ‖g(y) − g(y′)‖ > ε}.

These are points y whose neighborhood contains other points that g maps to points
far away from g(y). In such regions, g is highly erratic. Because g is continuous, these
regions become small as δ → 0: Sδ,ε ↓ ∅. It holds

P{‖g(Yn) − g(Y )‖ > ε} = P{Y ∈ Sδ,ε} + P{‖g(Yn) − g(Y )‖ > ε, Y /∈ Sδ,ε}
≤ P{Y ∈ Sδ,ε} + P{‖Yn − Y ‖ ≥ δ}.

The first term goes to 0 as δ → 0 because Sδ,ε → ∅. The second term goes to 0 as
n → ∞ because Yn →p Y . This proves g(Yn) →p g(Y ).

14



2 Stochastic convergence

Example 2.2.10 (Empirical variance). Consider the estimator S2
n = X2

n − (Xn)2 for
Var[X] = E[X2] − E[X]2. The LLN for the bivariate observations (Xi, X

2
i ) implies

(Xn, X2
n) →p (E[X],E[X2]). The continuous mapping theorem then implies that

S2
n →p Var[X], because the function g(x, y) = y − x2 is continuous.

Remark 2.2.11. The continuous mapping theorem and Lemma 2.2.8 imply that if
Xn →p X and Yn →p Y , then also Xn + Yn →p X + Y and XnYn →p XY .

2.3 Convergence in distribution and asymptotic normality

If the estimator is consistent, we know that it converges for infinitely many observations.
But on finite samples, there is some uncertainty how close we are to the truth. The
estimation error θ̂n − θ is a random variable, so it has a distribution. The main
question is therefore what this distribution is. In special cases, the distribution can be
derived exactly. But more commonly, we need to rely on asymptotic approximations.
Consistency tells us that the distribution converges to a point mass in the limit. But
that’s not helpful to quantify uncertainty. We first need a definition for convergence of
distributions.

2.3.1 Convergence in distribution and the CLT

Definition 2.3.1 (Convergence in distribution). Let Yn ∈ Rd be a sequence of
random vectors and Y ∈ Rd be another random vector. Denote the CDF of Y by F .
Then we say that Yn converges in distribution to Y or

Yn →d Y,

if for all y ∈ Rd where F is continuous,

P(Yn ≤ y) → F (y), as n → ∞.

The restriction to continuity points is necessary to allow for non-continuous distributions.
For uncertainty quantification, we are really interested in situations where the limit

is genuinely random. The CLT provides just that.

Theorem 2.3.2 (Central limit theorem, CLT). Let Y1, . . . , Yn ∈ Rd be iid with mean
µ = E[Y1] and covariance matrix Σ = Var[Y1]. The sample mean Y n = 1

n

∑n
i=1 Yi

satisfies
√
n(Y n − µ) →d N (0,Σ),

and we say that the sequence Y n is asymptotically normal.
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Figure 2.3: Illustration of the central limit theorem. The plots shows kernel
density estimates of Xn after simulating many iid data sets from Xi ∼
Bernoulli(0.5).

Remark 2.3.3. The statement of the theorem uses the common short notation
√
n(Y n−

µ) →d N (0,Σ). The long form is “there is a random variable Y ∼ N (0,Σ) such that√
n(Yn − µ) →d Y .”

A proof of the one-dimensional version can be found in Section 2.8.
Let’s consider the one-dimensional case for simplicity. The interpretation of the

CLT is that, for large enough n, the sample average Y n ∈ R behaves approximately1

like a N (µ, σ2/n) random variable. This is illustrated in Fig. 2.3. As n → ∞, the
variance Var[Y n] = σ2/n vanishes. Hence, in a probabilistic sense, the difference
Y n − µ gets closer to 0 (that’s the law of large numbers). The scaling with

√
n allows

us to obtain a non-trivial limit. You can think of it this way: multiplying a random
variable by

√
n blows up its variance. The rate

√
n strikes just the right balance:

Var[
√
nY n] = (

√
n)2Var[Y n] = σ2 ∈ (0,∞).

The central limit theorem is quite remarkable. The only assumptions are that the
sequence is iid with finite variance. It is called central because it plays such a central
role in probability and statistics. The name was first used by George Pólya2 in 1920
(in German, “Zentraler Grenzwertsatz”), but the idea is older and many other famous
mathematicians contributed, including Laplace, Cauchy, Bessel, and Poisson.

2.3.2 Asymptotic normality of estimators

So how is this useful for uncertainty quantification? If θ̂ − θ∗ ≈ N (0, σ2/n), we
can compute an (approximate) probability that θ̂ is within some distance of θ∗. In

1“Approximately behaves like” refers to probability statements: probability statements concerning
Y n are approximated by probability statements concerning N (µ, σ2/n).

2You might have been tortured by his ‘urn’ in high school.
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Figure 2.4: The F -Brownian bridge. The plot shows simulated curves from the
asymptotic distribution of the empirical distribution function (solid lines)
and the true distribution function (dashed line).

particular, for any ε > 0,

P(|θ̂ − θ| < ε) = P
(∣∣∣∣√n(θ̂ − θ)

σ

∣∣∣∣ < √
nε

σ

)

= P
(

−
√
nε

σ
<

√
n(θ̂ − θ)
σ

<

√
nε

σ

)
(CLT) ≈ Φ

(√
nε

σ

)
− Φ

(
−

√
nε

σ

)
.

If the variance σ2 is known, we can actually compute this number. It is usually
unknown, but can be estimated.
As n → ∞, the probability above approaches 1: the more data we have, the

more certain we are that θ̂ is close to θ∗. Note that the standard deviation of θ̂ is
approximately σ/

√
n. This term is called standard error and often used as a measure

of uncertainty. As n → ∞, the standard error goes to zero, which reflects our increase
in certainty.
The CLT applies directly to the sample average θ̂ = Xn. This is an estimator for

the parameter θ∗ = E[X]. Let’s revisit some of the other examples from the beginning.
As always, we assume that the data are iid random variables X1, . . . , Xn ∼ F .

Example 2.3.4 (Empirical CDF). The empirical distribution function is defined as

F̂n(x) = 1
n

n∑
i=1
1(Xi ≤ x), x ∈ R.

Convince yourself that

E[F̂n(x)] = F (x), Var[F̂n(x)] =
F (x)

(
1 − F (x)

)
n

.
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2 Stochastic convergence

(Hint: what’s the distribution of 1(Xi ≤ x)?) By the CLT,
√
n(F̂n(x) − F (x))√
F (x)

(
1 − F (x)

) →d N (0, 1).

The variance σ2 = F (x)
(
1 − F (x)

)
is not known, because it involves the unknown

distribution F . However, we can estimate it by σ̂2 = F̂n(x)
(
1 − F̂n(x)

)
. Even more, we

can say something about the behavior of F̂n at several points x1, . . . , xm simultaneously.
The multivariate CLT implies that

√
n(F̂n(x1) − F (x1), . . . , F̂n(xm) − F (xm)) →d N (0,Σ),

with

Σi,j = F (min{xi, xj}) − F (xi)F (xj).

This is the covariance function of a stochastic process called F -Brownian bridge.
Simulated curves from this process are shown in Fig. 2.4.

Example 2.3.5 (Kernel density estimator, KDE). Suppose we want to estimate a
continuous density f : R → R. The kernel estimator (with uniform kernel K(x) =
1{|x| ≤ 1}/2) is defined as

f̂(x) = 1
n

n∑
i=1

1
2h1{|Xi − x| ≤ h}.

We get

E[f̂(x)] = E[1{|Xi − x| ≤ h}]
2h = P(X ≤ x+ h) − P(X ≤ x− h)

2h := fh(x),

Var[f̂(x)] = 1
n
Var

[ 1
2h1{|Xi − x| ≤ h}

]
= fh(x)(1 − 2hfh(x))

2nh ,

and the central limit theorem yields

f̂(x) d≈ N
(
fh(x), fh(x)(1 − 2hfh(x))

2nh

)
.

Note that E[f̂(x)] = fh(x) is a smoothed version of f ; in particular, fh(x) 6= f(x), so
the KDE is biased. Because fh(x) → f(x) as h → 0, we prefer small bandwidths h to
make the estimator less biased. However, the variance increases with smaller h, so
there is a trade-off between bias and variance. When n is large, the variance is small
anyway, so we may also afford smaller h.
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2.3.3 Useful facts and tools

Besides the CLT, a few other tools are useful for analyzing the distributional limits of
statistical methods. The first is the continuous mapping theorem for convergence in
distribution.

Theorem 2.3.6 (Continuous mapping theorem, cnt’d). Let Yn →p Y and g : Rd →
Rq be continuous everywhere on a set S with P(Y ∈ S) = 1. Then g(Yn) →d g(Y ).

The proof is rather technical and omitted here; it can be found in, e.g., Van der Vaart
(2000, Theorem 2.3).

Example 2.3.7. Let Yn →d N (0,Σ) with Σ ∈ Rp×p invertible. Because the function
g(y) = y>Σ−1y is continuous at every y ∈ Rp, the continuous mapping theorem implies

Y T
n Σ−1Yn →d Y

T Σ−1Y,

Since Z = Σ−1/2Y ∼ N (0, I) and Z>Z ∼ χ2(p), this is equivalent to

Y T
n Σ−1Yn →d χ

2(p).

This technique is the basis for many tests in statistics, known as χ2-tests.

Let us now establish some connections between the different modes of convergence.

Lemma 2.3.8. Let Yn, Y, Zn be random vectors. Then:

(i) If Yn →p Y , then Yn →d Y .

(ii) Yn →p c for some constant c if and only if Yn →d c.

(iii) If Yn →d Y and Zn − Yn →p 0, then Zn →d Y .

(iv) If Yn →d Y and Zn →p c for some constant c, then (Yn, Zn) →d (Y, c).

The proof is left as an exercise. A combination of the last assertion of the lemma and
the continuous mapping theorem gives the following useful result.

Lemma 2.3.9 (Slutsky’s lemma). Let Yn →d Y and Zn →p c for some constant c.
Then

(i) Yn + Zn →d Y + c,

(ii) YnZn →d cY .

(iii) Yn/Zn →d Y/c if c 6= 0.

Example 2.3.10 (t-test). Let X1, . . . , Xn be an iid sample with Var[X1] > 0 and
E[X4

1 ] < ∞. We want to test the null hypothesis H0 : E[X1] = µ0 against the alternative
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H1 : E[X1] 6= µ0. We consider the t-statistic

Tn =
√
n(Xn − µ0)

Sn
,

where S2
n = X

2
n − (Xn)2 is the sample variance. Under the null hypothesis,

√
n(Xn −

µ0) →d N (0,Var[X1]) by the CLT and, further, S2
n →p Var[X1] by Example 2.2.10.

Now Slutsky’s lemma implies that Tn →d N (0, 1).

Another useful tool for functions of estimators is the delta method. It allows us to
approximate the distribution of a function of an estimator by the distribution of the
estimator itself.

Theorem 2.3.11 (Delta method). Let g : Rd → Rq be differentiable at some point
θ. If rn(Tn − θ) →d T for some sequence rn → ∞, then

rn(g(Tn) − g(θ)) →d ∇g(θ)T,

where ∇g(θ) = (∂gi(θ)/∂θj)i,j ∈ Rq×d is the Jacobian of g at θ.

Proof (optional). Note that because 1/rn → 0 and rn(Tn − θ) →d T , Slutsky’s lemma implies

Tn − θ = 1
rn
rn(Tn − θ) →d 0 · T = 0.

Hence, Tn − θ →p 0. Next define the function ψ : Rd → Rq with

ψ(h) = g(θ + h) − g(θ) − ∇g(θ)h
‖h‖ for h 6= 0, and ψ(0) = 0.

Because g is differentiable at θ, ψ is continuous at 0. Now the continuous mapping theorem implies
ψ(Tn − θ) →p ψ(0) = 0. Now

rn (g(Tn) − g(θ) − ∇g(θ)(Tn − θ)) = rn‖Tn − θ‖ψ(Tn − θ) →d ‖T‖ · 0 = 0,

by the continuous mapping theorem (rn‖Tn − θ‖ →d ‖T‖) and Slutsky’s lemma. Now Zn =
rn∇g(θ)(Tn − θ) →d ∇g(θ)T by the continuous mapping theorem, and Lemma 2.3.8 (iii) implies
that also Yn = rn (g(Tn) − g(θ)) →d ∇g(θ)T .

The delta method has many applications. A classical one is the distribution of the
sample variance.

Example 2.3.12 (Sample variance). Let X,X1, . . . , Xn
iid∼ F be a sequence of random

variables with finite variance σ2 = Var[X]. The sample variance is defined as

S2
n = 1

n

n∑
i=1

(Xi −Xn)2 = X2
n − (Xn)2.

Note that the sample variance does not change if we replace Xi by Xi − E[Xi], so we
may assume E[Xi] = 0 without loss of generality. The central limit theorem implies
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that

√
n

(
Xn − 0
X2

n − σ2

)
→d Z ∼ N

(
0,
(
E[X2] E[X3]
E[X3] E[X4] − E[X2]2

))
.

The function g(x, y) = y− x2 is differentiable at θ = (E[X], σ2) with Jacobian ∇g(θ) =
(0, 1). The delta method implies

√
n(S2

n − σ2) =
√
n
(
X2

n − (Xn)2 − σ2
)

→d ∇g(θ)Z = Z2
d= N (0,E[X4] − E[X2]2).

Using Slutsky’s lemma, we can also show that the same limit holds for the unbiased
version nS2

n/(n− 1), because nS2
n/(n− 1) − S2

n →p 0.

2.4 Stochastic O-notation

We now introduce some notation that allows us to describe the behavior of random
variables in a concise way. The stochastic O-notation is a probabilistic version of the
Landau O-notation from analysis. It allows us to describe the rate of convergence of
random variables in a compact way. Recall that for two sequences an, bn, we write
an = O(bn) if there exists a constant C such that |an| ≤ C|bn| for all n large enough,
and an = o(bn) if an/bn → 0. In particular, an = O(1) means that an is bounded, and
an = o(1) means that an converges to zero. This is now generalized to sequences of
random variables.

Definition 2.4.1 (Bounded in probability). A sequence of random vectors Yn is
called bounded in probability if for every ε, there is M such that P(‖Yn‖ > M) < ε

for n large enough. We write Yn = Op(1).

Similarly, we write Yn = op(1) if ‖Yn‖ →p 0. For example, the law of large numbers
reads Xn − E[X1] = op(1). This can be generalized as follows.

Definition 2.4.2 (Stochastic O-symbols). Let Yn, Zn, Rn be sequences of random
variables. We write

• Yn = Op(Rn) if Yn = ZnRn for some Zn = Op(1).

• Yn = op(Rn) if Yn = ZnRn for some Zn →p 0.

Intuitively, Yn = Op(Rn) means that, for n large enough and with high probability,
Yn is at most as large as some constant times Rn. The statement Yn = op(Rn) means
that Yn is much smaller than Rn. The notation is most often used with deterministic
sequences rn ↘ 0, describing a convergence rate. Then Yn = Op(rn) is equivalent to
Yn/rn = Op(1), and Yn = op(rn) is equivalent to Yn/rn →p 0. Here the interpretation
is as follows: Yn = Op(rn) means that Yn behaves like rn times a bounded random
variable; Yn = op(rn) means that Yn goes to zero in probability faster than rn.
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2 Stochastic convergence

Example 2.4.3. The sample mean Xn satisfies Xn − E[X1] = Op(1/
√
n), since

P
(

|Xn − E[X1]|
1/

√
n

> M

)
= P(

√
n|Xn − E[X1]| > M) ≤ nVarXn

M2 = Var[X1]
M2 .

The right hand side can be made arbitrarily small by choosing M large enough. Hence,
|Xn − E[X1]|/(1/

√
n) = Op(1). Note that the statement Xn − E[X1] = Op(1/

√
n) is

more accurate than just saying Xn →p E[X1], because it additionally quantifies the rate
of convergence.

The above is a simple example of a more general principle. Markov’s equality gives
Y = Op(E[‖Y ‖k]1/k) for any k ≥ 1.
Stochastic O-symbols are so convenient because there are many simple rules to

calculate with them. Here are some examples:

Lemma 2.4.4 (Stochastic O-calculus). It holds

(i) Op(An) +Op(Bn) = Op(max{An, Bn}),

(ii) op(An) + op(Bn) = op(max{An, Bn}),

(iii) Op(An) + op(An) = Op(An),

(iv) Op(An)Op(Bn) = Op(AnBn),

(v) op(An)Op(Bn) = op(AnBn),

(vi) (1 − op(1))−1 = Op(1).

Proof. The proofs are rather straightforward, working with the explicit definitions of
the statements. We shall only prove (iii) for illustration. The term Op(An) is an alias for
a random variable ZnAn, with Zn = Op(1). Similarly, op(An) is an alias for a random
variable WnAn with Wn = op(1). Hence, Op(An) + op(An) = (Zn +Wn)An = Op(An),
because Zn +Wn = Op(1). To see the latter statement, note that

P(|Zn +Wn| > M) ≤ P(|Zn| > M/2) + P(|Wn| > M/2).

The second term converges to zero as n → ∞, because Wn = op(1). The first term can
be made arbitrarily small since Zn = Op(1). Hence, Zn +Wn = Op(1).

Note that while these statements look like equalities, they must only be read from left
to right. For example, the statement op(1) = Op(1) (‘every sequence converging to
zero in probability is bounded in probability’) is true in general; but the statement
Op(1) = op(1) (‘every bounded sequence converges to zero in probability’) is false.

2.5 Excursion: moment conditions

The statement and proof of both LLN and CLT involve moment conditions of the form
E[|X|q] < ∞. Moment conditions are essential in mathematical statistics. Whether a
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Figure 2.5: Common orders for the decay of tail probabilities P(|X| > s). The left plot
shows shows the probabilities on log-scale to make the far tail better visible.

statistical law holds or fails often depends on the existence of certain moments, both in
theory and in practice. It is worthwhile to spend some time understanding what they
really mean.

Moment conditions are assumptions about the tail of a distribution. Recall that for
any positive random variable Y ,

E[Y ] =
∫ ∞

0
P(Y > t) dt.

This implies

E[|X|q] =
∫ ∞

0
P(|X|q > t) dt =

∫ ∞

0
P(|X| > t1/q) dt.

The tail probabilities P(|X| > s) determine how unlikely it is to observe very large
values of X. The moment condition E[|X|q] < ∞ requires that the tail of X is not too
heavy. Whether or not the integral is finite is only determined by the far tail of the
distribution, i.e., P(|X| > s) with s large. In particular, E[|X|q] < ∞ holds if

P(|X| > s) = Cs−q′ for some q′ > q,C < ∞ and all s ≥ 1,

and it fails if

P(|X| > s) ≥ cs−q for some c > 0 and all s ≥ 1.

The larger q, the faster the tail probabilities must decay for the moment condition to
hold. Hence, the larger q, the less likely we see extreme values of X.
Many standard distributions have finite moments of all orders q ≥ 1, including the

Gaussian, the χ2, the exponential, and Poisson distributions. Their tail probabilities
decay exponentially fast in s. The Student t distribution with ν degrees of freedom, for
example, only has finite moments up to order q < ν. Its tail decays only polynomially
in s. Also the Pareto distribution has polynomial tail decay. Such distributions are
called heavy tailed and appear frequently when analyzing extreme events in climate,
finance, or insurance. Some common orders of tail decay are illustrated in Fig. 2.5
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Figure 2.7: The LLN fails for the Cauchy distribution because E[|X|] = ∞.

If the tail doesn’t decay fast enough, the CLT will fail — also in practice. Fig. 2.6
shows an example of a centered Pareto distribution with tail s−1.5, which has infinite
variance and fails to converge to a Gaussian. In fact, the spread of

√
n(Xn−µ) increases

with n and also the asymmetry doesn’t appear to go away. Taking this a step further,
Fig. 2.7 shows paths of the sample average Xn of a Student t distribution with ν = 1
degree of freedom (i.e., a Cauchy distribution). The sample average does not converge
to the mean, but jumps around chaotically. This is because E[|X|] = ∞, which makes
the LLN fail.
Generally speaking, conditions on the first or second moment are considered very

mild. In financial statistics, polynomial moment conditions with single-digit q are often
considered appropriate. In high-dimensional statistics, bounded exponential moments,
E[exp(|X|)] < ∞, (which implies boundedness of all polynomial moments) are often
required. In finite-dimensional settings with independent data, bounded first or second
moments are usually sufficient. So that’s what we will encounter most frequently in
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2 Stochastic convergence

this course.

2.6 Almost sure convergence and strong consistency*

There is a third mode of convergence that sometimes appears in the literature: almost
sure convergence. It is the strongest form of convergence, implying convergence with
probability one.

Definition 2.6.1 (Almost sure convergence). Let Y, Y1, Y2, . . . ∈ Rd be random
vectors. We say that Yn converges to Y almost surely (a.s.), or Yn →a.s. Y , if

P
{
ω : lim

n→∞
‖Yn(ω) − Y (ω)‖ = 0

}
= 1.

In the notation, we use the fundamental definition of a random variable being a map
from the sample space Ω to Rd. Upon fixing ω ∈ Ω, the sequence ‖Yn(ω) − Y (ω)‖
is deterministic and may converge or not. Almost sure convergence asserts that the
collection of all states ω where the sequence converges to zero has probability 1. Almost
sure convergence is a very strong form of convergence. It implies convergence in
probability and distribution.

The almost sure version of consistency is called strong consistency.

Definition 2.6.2 (Strong consistency). Let θ be an unknown quantity that we are
interested in. An estimator θ̂n is called strongly consistent for θ if

θ̂n →a.s. θ.

Almost sure convergence appears to be of minor interest in statistics and stronger than
needed in most applications. It is often difficult to establish and does not provide
much additional information compared to convergence in probability. However, it is
sometimes useful in theoretical analyses. Proofs of strong consistency rely on the strong
law of large numbers, Xn →a.s. E[X1], or a direct argument based on the Borel-Cantelli
lemma. The strong law holds under the condition E[|X1|] < ∞, but we shall state a
version using a stronger requirement to illustrate the proof technique.

Theorem 2.6.3. Suppose X1, X2, . . . is an iid sequence of random variables with
E[X4

1 ] < ∞. Then Xn →a.s. E[X1].

Proof. The statement Xn →a.s. E[X1] is the same as Xn − E[X1] →a.s. 0, so we
may assume without loss of generality that E[X1] = 0. The statement Xn(ω) → 0 is
equivalent to: for every ε > 0, |Xn(ω)| < ε for all but finitely many n. Define the events
En = {ω : |Xn(ω)| ≥ ε}. The Borel-Cantelli lemma states that if

∑∞
n=1 P(En) < ∞,

then P(En infinitely often) = 0. Markov’s inequality gives

P(En) = P
(
|Xn| ≥ ε

)
≤ E[X4

n]
ε4 .
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Now

E[X4
n] = E

( 1
n

n∑
i=1

Xi

)4
 = 1

n4

∑
1≤i,j,k,l≤n

E[XiXjXkXl].

Because the Xi are independent with mean zero, all summands where an index shows up
only once vanish. This leaves us with only terms of the form E[X4

i ] and E[X2
i X

2
j ], from

which there are only O(n2) many, and all of them are finite. Hence, E[X4
n] = O(1/n2),

and
∑∞

n=1 P(En) < ∞.

2.6.1 Triangular arrays*

The KDE example illustrates the need for more general CLT results. To get good
density estimates, we need to adjust the bandwidth h = hn according to the sample
size n. But if we do, we can no longer apply the CLT from Theorem 2.3.2. The
issue is somewhat subtle. For any fixed, h, we may define the random variables
Yi,h = 1

h1{|Xi − x| ≤ h} and write f̂(x) = 1
n

∑n
i=1 Yi,h. This is a sample average over

the iid sequence Y1,h, . . . , Yn,h ∼ Ph. However, if we change the bandwidth to h′, we
generate another iid sequence Y1,h′ , . . . , Yn,h′ coming from a different distribution Ph′ .
In particular, changing h with n, we generate a triangular array of iid sequences

Y
(1)

1 ,

Y
(2)

1 , Y
(2)

2 ,

Y
(3)

1 , Y
(3)

2 , Y
(3)

3 ,

...

Y
(n)

1 , Y
(n)

2 , Y
(n)

3 , . . . , Y (n)
n .

Every row of this array is an iid sequence, but the distribution of the variables changes
from row to row. The Lindeberg-Feller CLT is one of the most general results that
covers this situation.
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Theorem 2.6.4 (Lindeberg-Feller CLT). For each n, let Y (n)
1 , . . . , Y

(n)
kn

be a sequence
of independent random vectors such that

kn∑
i=1
Var[Y (n)

i ] → Σ, [converging covariance]

kn∑
i=1
E[‖Y (n)

i ‖21{‖Y (n)
i ‖ > ε}] → 0 for every ε > 0, [Lindeberg condition]

Then

kn∑
i=1

(Y (n)
i − E[Y (n)

i ]) →d N (0,Σ).

Some comments:

• The theorem is most often applied with kn = n, but the more general form is
sometimes useful.

• The result does not even require the rows of the triangular array to be iid. It is
sufficient that the variables in each row are independent.

• Note that the
√
n factor is missing from the convergence statement. In the

triangular array setup, this factor is included in the random variables Y (n)
i . These

are assumed to be standardized such that sum of their variances converges to a
constant. This implies that most individual variances go to zero as n → 0. We
recover the usual CLT for an iid sequence X1, . . . , Xn by setting Y (n)

i = Xi/
√
n.

However, including the scaling in the variables additionally allows for convergence
rates different from

√
n, which is often useful (for example, in the context of the

KDE).

• Lindeberg’s condition is a technical condition that gives additional control over
the deviations form the mean. This additional control helps us deal with the fact
that the distribution of the random variables changes with n. It excludes some
pathological cases where the variances converge, but the distributions change in
very unfortunate ways that prevent convergence to a Gaussian limit.

While establishing convergence of the variances is often straightforward, the Lindeberg
condition can be tricky to verify. A common approach is to use the stricter Lyapunov
condition, which is easier to check but implies the Lindeberg condition.

Lemma 2.6.5 (Lyapunov’s condition). If for some δ > 0,

kn∑
i=1
E[‖Y (n)

i ‖2+δ] → 0,

then the Lindeberg condition holds.
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Proof. Observe

kn∑
i=1
E
[
‖Y (n)

i ‖21{‖Y (n)
i ‖ > ε}

]
≤ 1
εδ

kn∑
i=1
E
[
‖Y (n)

i ‖2+δ1{‖Y (n)
i ‖ > ε}

]
.

If the far right-hand side converges to zero, also the left-hand side does.

It is usually most convenient to apply Lyapnuov’s condition with δ = 1 or δ = 2. Let
us illustrate this with the KDE.

Example 2.6.6 (Kernel density estimator, cont’d). Consider again the kernel density
estimator from Example 2.3.5. Suppose that f is smooth and bounded. For some
bandwidth sequence hn → 0, define

Y
(n)

i = 1√
nhn

(1{|Xi − x| ≤ hn},

so that

√
nhn(f̂(x) − E[f̂(x)]) =

n∑
i=1

(Y (n)
i − E[Y (n)

i ]).

We now check the conditions of Lindeberg-Feller CLT. It holds

n∑
i=1
Var[Y (n)

i ] = nVar[Y (n)
i ] = fhn(x)(1 − hnfhn(x)) → f(x),

and
n∑

i=1
E
[
|Y (n)

i |3
]

= n
1

n3/2h
3/2
n

E[1{|X − x| ≤ hn}3] = 1
n1/2h

1/2
n

fhn(x) → 0,

provided nhn → ∞. Hence, if hn does not vanish too fast, the KDE is asymptotically
normal: √

nhn(f̂(x) − E[f̂(x)]) →d N (0, f(x)).

2.7 Proof of the weak LLN under minimal conditions*

We now prove the weak law of large numbers under the condition maxj E[|Xi,j |] < ∞.
To simplify, we only consider the univariate case Xi ∈ R. The proof is largely similar
to the one given before, but we cannot use Markov’s inequality for the second moment
of Xn directly, because it might be infinite. Instead, we use a truncation argument,
a common technique in probability theory. We truncate the random variables to a
bounded interval where we can apply Markov’s inequality, and then let the truncation
threshold go to infinity.
Formally, define the truncated random variables X ′

i = Xi1(|Xi| ≤
√
n) and the
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truncated average X ′
n = 1

n

∑n
i=1X

′
i. It holds

Xn = X
′
n + 1

n

n∑
i=1

Xi1(|Xi| >
√
n).

For the second term, we have

E

[∣∣∣∣∣ 1n
n∑

i=1
Xi1(|Xi| >

√
n)
∣∣∣∣∣
]

≤ E[|Xi|1(|Xi| >
√
n)].

The right hand side is decreasing in n, and by the monotone convergence theorem
(every bounded decreasing sequence converges), we have

E[Xi1(|Xi| >
√
n)] → 0 as n → ∞.

This further implies E[X ′
n] → E[Xn] = E[Xi] and, by Markov’s inequality,

1
n

n∑
i=1

Xi1(|Xi| >
√
n) →p 0.

It remains to show that

X
′
n − E[X ′

n] →p 0.

Because the X ′
i are bounded, their second moment exists, and we can apply Markov’s

inequality as in the simpler proof: For any ε > 0,

P(|X ′
n − E[X ′

n]| > ε) ≤ Var[X ′
n]

ε2 [Markov]

≤ Var[X ′
i]

nε2 [X ′
i iid]

≤ E[|X ′
i|2]

nε2 [Var[Y ] ≤ E[Y 2]]

≤
√
nE[|X ′

i|]
nε2 . [|X ′

i| ≤
√
n]

This converges to zero as n → ∞, which concludes the proof.
The strong law can be proven under the same condition with the same technique,

but requires several additional tricks. In case you’re interested, see
https://terrytao.wordpress.com/2008/06/18/the-strong-law-of-large-numbers.

2.8 Proof of the CLT*

We give a short proof of the one-dimensional CLT.
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Theorem 2.8.1 (Central Limit Theorem). Let X,X1, X2, . . . be a sequence of
independent and identically distributed random variables with finite variance σ2.
Then √

n(Xn − E[X]) d−→ N(0, σ2).

Proof. Let φX(t) be the characteristic function ofX1. We will prove that the characteristic
function of Zn =

√
n(Xn − E[X1])/σ converges to e−t2/2, which is the characteristic

function of N(0, 1). By Lévy’s continuity theorem, this proves that Zn
d−→ N(0, 1).

Since Xn − E[X] has mean zero, we may assume w.l.o.g. that E[X] = 0.
The characteristic function of Zn is:

φZn(t) = E[eitZn ]

= E

exp

 n∑
j=1

it

σ
√
n
Xj

 [defnition of Zn]

= E

 n∏
j=1

exp
(

it

σ
√
n
Xj

) [e
∑

i
ai =

∏
i e

ai ]

=
n∏

j=1
E

[
exp

(
it

σ
√
n
Xj

)]
[E[XY ] = E[X]E[Y ] for independent X,Y ]

=
[
φX

(
t

σ
√
n

)]n

[identical distribution of X1, . . . , Xn]

By Taylor’s theorem, for small t:

φX(t) = 1 − t2

2 σ
2 + o(t2),

so

φX

(
t

σ
√
n

)
= 1 − t2

2n + o

( 1
n

)
.

Using the fact that (1 + xn)n → ex when nxn → x, we get

φZn(t) =
[
φX

(
t

σ
√
n

)]n

→ exp
(

− t2

2

)
,

as claimed.

30



3 M- and Z-estimators

In the previous chapter we have learned how to deal with statistical methods that
can be written as a (function of) a sample average. This is useful, but some of the
most important statistical methods, such as the maximum likelihood estimator or
sample median, are not of this form. Even more commonly, estimators are defined as
solutions to optimization problems. Such estimators are called M-estimators, where
the M stands for either minimum or maximum. A second important class is the class
of Z-estimators, which are defined as the zero of an estimating equation.

3.1 M-estimators

Definition 3.1.1 (M-estimator). Let Θ be a parameter space, X1, . . . , Xn ∈ X iid
observations, and mθ : X → R a loss function. An M-estimator is defined as the
solution to the optimization problem

θ̂ = arg min
θ∈Θ

1
n

n∑
i=1

mθ(Xi).

Existence of the minimizer can be guaranteed under mild conditions; for example, if Θ
is compact and mθ(x) is continuous in θ for all x. We will take existence as a given
in what follows. Instead of minimizing the loss function, we could also maximize it,
because the latter is equivalent to minimizing the negative of the loss function. Let’s
see some examples.

Example 3.1.2 (Least squares estimator in linear model). In the context of linear
regression, the least squares estimator is an M-estimator where the loss function is the
squared error. Consider the linear model

Yi = β>Xi + εi, i = 1, . . . , n,

where εi are iid random errors with E[εi | Xi] = 0. The parameter vector β is estimated
by minimizing the sum of squared residuals:

β̂ = arg min
β∈Θ

1
n

n∑
i=1

(
Yi − β>Xi

)2
.

Example 3.1.3 (Maximum Likelihood Estimator). The maximum likelihood estimator
(MLE) is an M-estimator where the loss function is the negative log-likelihood. Suppose
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that the observations X1, . . . , Xn follow a probability distribution with parameter θ ∈ Θ
and probability density function fθ. The MLE is defined as

θ̂MLE = arg min
θ∈Θ

(
1
n

n∑
i=1

− log fθ(Xi)
)
.

Example 3.1.4 (Sample quantiles). The α-quantile of a sample minimizes the expected
value of an asymmetric loss function. For given α ∈ (0, 1), the pinball loss is defined as

ρα(x) =

α|x| if x > θ,

(1 − α)|x| if x ≤ θ.

The α-sample quantile θ̂α is then given by

θ̂α = arg min
θ∈R

1
n

n∑
i=1

ρα(x− θ).

The sample median is a special case of the sample quantile with α = 1/2.

Example 3.1.5 (Quantile Regression). Quantile regression extends the concept of
quantiles to the estimation of conditional quantiles of the response variable. For
example, the linear quantile regression estimator β̂α is then given by

β̂α = arg min
β

1
n

n∑
i=1

ρα(Yi − β>Xi),

with ρα given as in Example 3.1.4.

3.2 Z-estimators

To solve an M-estimation problem, we need to minimize a loss function. If the loss
function is differentiable in θ, we may take the derivative of the criterion function and
set it to zero. Then θ̂ is defined as the solution of the estimating equation

1
n

n∑
i=1

∇θmθ(Xi) = 0.

More generally, we can define estimators directly as solutions to estimating equations,
without the need to minimize a loss function. By convention, the right-hand side of the
estimating equation is set to zero, which is why these estimators are called Z-estimators
(Z for zero).
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Definition 3.2.1 (Z-estimator). Let Θ be a parameter space, X1, . . . , Xn ∈ X iid
observations, and ψθ : X → Rp an estimating function. A Z-estimator is defined as
the solution to the estimating equation

1
n

n∑
i=1

ψθ(Xi) = 0.

Any of the examples from the previous section can be converted into a Z-estimator
by taking the derivative. We shall restrict our attention to two interesting examples.

Example 3.2.2 (Score equations of MLE). The Maximum Likelihood Estimator is a
Z-estimator with ψθ(x) = ∇θ log fθ(x), the score function of the likelihood. The MLE
is then defined as the solution to the score equation

1
n

n∑
i=1

∇θ log fθ(Xi) = 0.

Example 3.2.3 (Sample quantile as Z-estimator). The sample quantile can be written
as a Z-estimator with ψθ(x) = α1(x > θ) − (1 − α)1(x ≤ θ). Note that the function
ρα from Example 3.1.4 is not differentiable at 0, but it suffices that it is differentiable
almost everywhere. The sample quantile is then defined as the solution to the estimating
equation

1
n

n∑
i=1

[α1(Xi > θ) − (1 − α)1(Xi ≤ θ)] = 0.

This equation can be rewritten as

1
n

n∑
i=1

[α1(Xi > θ) − (1 − α)1(Xi ≤ θ)] = 0

⇔ α
1
n

n∑
i=1
1(Xi > θ) = (1 − α) 1

n

n∑
i=1
1(Xi ≤ θ)

⇔ α
1
n

n∑
i=1

[1 − 1(Xi ≤ θ)] = (1 − α) 1
n

n∑
i=1
1(Xi ≤ θ)

⇔ α = 1
n

n∑
i=1
1(Xi ≤ θ).

So indeed, the sample quantile is the value θ such that a fraction α of the observations
are at most θ.

Z-estimators are sometimes easier to analyze, especially when considering asymptotic
normality results. The choice between formulations as M- and Z-estimators is often
a matter of convenience. There are some examples of Z-estimators that cannot be
written as minimizing an average loss, however. One example comes from one of my
primary fields of research.
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Example 3.2.4 (2-step estimator in copula model). A copula model decomposes the
joint density f of a random vector (X,Y ) into the product of the marginal densities
fX and fY and a copula density c:

f(x, y; θ) = fX(x; θX)fY (y; θY )c(FX(x; θx), FY (y; θY ); θC).

The marginal densities capture the individual behvior of X and Y , while the copula
induces dependence between X and Y . When c ≡ 1, the variables are independent. To
estimate the parameters θ = (θX , θY , θC), we typically use a 2-step procedure. In the
first step, we estimate the marginal parameters θX and θY by maximum likelihood:

θ̂X = arg max
θX

1
n

n∑
i=1

log fX(Xi; θX),

θ̂Y = arg max
θY

1
n

n∑
i=1

log fY (Yi; θY ).

In the second step, we fix these estimates and estimate θC by maximizing the copula
likelihood:

θ̂C = arg max
θC

1
n

n∑
i=1

log c(FX(Xi; θ̂X), FY (Yi; θ̂Y ); θC).

The full parameter estimate θ̂ = (θ̂x, θ̂Y , θ̂C) solves a sequence of maximization problems,
which cannot be written as a single optimization problem over a sample average.
However, by converting each step into a Z-estimation problem, we can write θ̂ as the
solution to the estimating equation

1
n

n∑
i=1

 ∇θX
log fX(Xi; θX)

∇θY
log fY (Yi; θY )

∇θC
log c(FX(Xi; θX), FY (Yi; θY ); θC)

 = 0.

Note that since (θ̂X , θ̂Y ) must solve the first two equations, the estimates are indeed
equivalent to the (marginal) MLEs defined above. With these estimates being fixed, the
third equation is equivalent to the second step of the 2-step procedure.

3.3 Consistency

3.3.1 Setup

In the above examples, it was tacitly understood that the M- and Z-estimators are
sensible estimators of the quantities they’re designed to estimate. But how do we know
that’s really the case? As we have discussed in the last section, a minimal condition
for an estimator θ̂ of some parameter θ0 to be considered sensible, is consistency:
θ̂ →p θ0 as n → ∞. Gladly, there is a very general theory of consistency for M- and
Z-estimators.
To set things up, we assume that the true parameter θ0 is the maximizer of some
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population criterion function M : Θ → R, i.e.

θ0 = arg max
θ∈Θ

M(θ).

To construct an estimator, we replace the population criterion M(θ) by a sample
criterion Mn(θ), and define

θ̂ = arg max
θ∈Θ

Mn(θ).

Remark 3.3.1. For M-estimators as defined above, the population criterion is M(θ) =
E[mθ(X)]. For Z-estimators, M(θ) = ‖E[ψθ(X)]‖ is a valid choice. The population
criterion involves an expectation over an unknown probability measure for X. The
estimators are constructed by replacing the expectation by a sample average.

3.3.2 Why pointwise convergence is not enough

The sample criterion function Mn(θ) is a random function, because it depends on the
random sample X1, . . . , Xn. To analyze the consistency of the estimator θ̂, we need
to understand how the sample criterion function behaves as n → ∞. We usually have
Mn(θ) →p M(θ) for all θ ∈ Θ by the law of large numbers. However, this is not
sufficient to guarantee that the estimator θ̂ is consistent. Informally, the reason is that
we are comparing infinitely many possible values of Mn(θ) at the same time. While,
in isolation, each Mn(θ) may be close to M(θ) with high probability, they are not
necessarily close to each other simultaneously.
To illustrate this point, consider the following example. Let Θ = {θ1, . . . , θK} be a

finite set with K elements. Suppose that Mn(θ1), . . . ,Mn(θK) are independent random
variables with distribution N (M(θk), 1/

√
n) for all k = 1, . . . ,K. A simple application

of Markov’s inequality shows Mn(θk) − M(θk) →p 0 for every k = 1, . . . ,K. Now
consider the uniform distance max1≤k≤K |Mn(θk) −M(θk)|. It holds

P
(

max
1≤k≤K

|Mn(θk) −M(θk)| ≤ ε

)
= P(|Mn(θ1) −M(θ1)| ≤ ε, . . . , |Mn(θK) −M(θK)| ≤ ε)

=
K∏

k=1
P(|Mn(θk) −M(θk)| ≤ ε) [independence of Mn(θk)]

= [Φ(ε/
√
n) − Φ(−ε/

√
n)]K ,

where Φ is the standard normal CDF. For any fixed K, the probability on the right-
hand side converges to 1 as n → ∞. However, this is no longer the case when we take
K → ∞:

lim
K→∞

P
(

max
1≤k≤K

|Mn(θk) −M(θk)| ≤ ε

)
= 0.

Simply put, because we compare so many values {Mn(θ) : θ ∈ Θ}, at the same time,
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Figure 3.1: Illustration of the failure of pointwise convergence. The more values of
Mn(θ) we compare, the more likely it is that at least one of them is far
away from M(θ); the corresponding θ may be the minimizer.

there is a high probability that at least one of them is far away from M(θ). We can
then no longer treat Mn as a sufficiently good approximation of M when optimizing
over the entire loss surface. To illustrate how this can go wrong, a simulated example
of the above toy model with M(θ) = θ2/5 and n = K is shown in Fig. 3.1. On the left
(n = 20), the variance is still very high, and the minimizer is far away from θ0 = 0. As
we move to the right, the variance decreases. But because we compare so many values
of Mn(θ), there’s always one damn θk far away from θ0 that minimizes Mn(θ).
Not all hope is lost. The example above has an unrealistic feature. The functions

Mn(θ) are usually continuous, so it is unlikely that the values Mn(θ) and Mn(θ′) are
far away from each other if θ and θ′ are close. If that’s the case, the two values Mn(θ)
and Mn(θ′) should be strongly dependent, not independent! Fig. 3.2 shows the same
setting, but with Corr(Mn(θ),Mn(θ′)) = 1 − |θ − θ′|/10 for all θ 6= θ′. Although most
Mn(θ) may be somewhat far away from M(θ), their distance from M(θ) is always
similar. This is a consequence of the dependence between close-by values of Mn. As
a result, their relative magnitude is mostly preserved, and the sample maximizer θ̂ is
also close to the true value θ0 = 0. Further, it doesn’t really matter how many θk we
compare, because they all lie on a smooth curve.

What we observe here is uniform convergence (in probability):

sup
θ∈Θ

|Mn(θ) −M(θ)| →p 0.

Uniform convergence is a much stronger property than pointwise convergence. All the
distances |Mn(θ) − M(θ)| must be small at the same time. As we shall see, this is
exactly what we need to guarantee the consistency of the estimator θ̂ = arg maxMn(θ).
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Figure 3.2: Illustration of the uniform convergence. No matter how many values of
Mn(θ) we compare, their distance from M(θ) is uniformly small.

3.3.3 Main results

Theorem 3.3.2 (Consistency of M-estimators). Let

θ̂ = arg min
θ∈Θ

Mn(θ), θ0 = arg min
θ∈Θ

M(θ).

Suppose that:

(i) The minimum is well-separated: for every ε > 0,

inf
‖θ−θ0‖≥ε

M(θ) > M(θ0);

(ii) The sample criterion Mn converges uniformly to the population criterion M :

sup
θ∈Θ

|Mn(θ) −M(θ)| →p 0.

Then θ̂ →p θ0.

Proof. Let ε > 0 be arbitrary. We want to show

P
{

‖θ̂ − θ0‖ > ε
}

→ 0 for all ε > 0.

Because the minimum is well separated by (i), we can find η > 0 such that M(θ) ≥
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M(θ0) + η. We now have the following implications:

‖θ̂ − θ0‖ > ε

⇒ inf
‖θ−θ0‖>ε

Mn(θ) ≤ inf
‖θ−θ0‖≤ε

Mn(θ)

⇒ inf
‖θ−θ0‖>ε

Mn(θ) ≤ Mn(θ0) [inf‖θ−θ0‖≤εM(θ) ≤ M(θ0)]

⇒ inf
‖θ−θ0‖>ε

Mn(θ) −M(θ0) ≤ Mn(θ0) −M(θ0)

⇒ inf
‖θ−θ0‖>ε

Mn(θ) −M(θ) ≤ Mn(θ0) −M(θ0) − η [M(θ) − η ≥ M(θ0)]

⇒ inf
‖θ−θ0‖>ε

[Mn(θ) −M(θ)] − [Mn(θ0) −M(θ0)] ≤ −η

⇒ 2 sup
θ∈Θ

|Mn(θ) −M(θ)| ≥ η

Thus,

P
{

‖θ̂ − θ0‖ > ε
}

≤ P
{

2 sup
θ∈Θ

|Mn(θ) −M(θ)| ≥ η

}
→ 0.

The well-separatedness condition on the population criterion M(θ) is mild. For
example, it is satisfied if the population criterion M is continuous and the maximum is
unique. A similar consistency result for Z-estimators follows as an easy corollary.

Theorem 3.3.3 (Consistency of Z-estimators). Let Ψn : Θ → Rp be the sample
criterion function of a Z-estimator, Ψ: Θ → Rp the population criterion, and θ̂ and
θ0 be the solutions of the equations

Ψn(θ̂) = 0, Ψ(θ0) = 0.

Suppose that:

(i) The zero is well-separated: for every ε > 0,

inf
‖θ−θ0‖≥ε

‖Ψ(θ)‖ > 0;

(ii) The sample criterion Ψn converges uniformly to the population criterion Ψ:

sup
θ∈Θ

‖Ψn(θ) − Ψ(θ)‖ →p 0.

Then θ̂ →p θ0.
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Figure 3.3: Illustration of brackets (black) for some sets of functions (grey).

Proof. Take Mn(θ) = ‖Ψn(θ)‖ and M(θ) = ‖Ψ(θ)‖. It holds

sup
θ∈Θ

|Mn(θ) −M(θ)| = sup
θ∈Θ

|‖Ψn(θ)‖ − ‖Ψ(θ)‖|

≤ sup
θ∈Θ

|‖Ψn(θ) − Ψ(θ)‖| [reverse triangle inequality]

→p 0.

The result now follows from the previous theorem.

3.3.4 Uniform laws of large numbers

The uniform convergence condition in the previous theorems is more demanding. Setting
Mn(θ) = 1

n

∑n
i=1mθ(Xi), we can rewrite the uniform convergence condition as

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1
mθ(Xi) − E[mθ(X)]

∣∣∣∣∣ →p 0.

This is a uniform law of large numbers, and classes of functions {mθ : θ ∈ Θ} that
satisfy such a law are sometimes called Glivenko-Cantelli classes. The uniform law is
a much stricter statement than the usual law of large numbers applied to any point
separately. The illustrative examples from Fig. 3.1 shows a situation where pointwise
convergence holds, but uniform convergence fails. Establishing uniform convergence is
often the most challenging part of proving consistency. It is a core topic in empirical
process theory, an advanced subject that deserves its own course. Without going into
too much detail, we can get quite reasonable results with rather elementary tools.
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Definition 3.3.4 (Bracketing numbers). Let F ⊂ {f : X → R} be a set of functions.

• A bracket [f, f ] is the set of all f ∈ F such that f(x) ≤ f(x) ≤ f(x) ∀x ∈ X .

• We call [f, f ] an ε-bracket (with respect to a norm ‖ · ‖ on F) if ‖f − f‖ ≤ ε.

• The minimal number N of ε-brackets needed to cover F , i.e, F ⊆
⋃N

k=1[f
k
, fk],

is called the bracketing number of F and is denoted by N[](ε,F , ‖ · ‖).

Examples of brackets are illustrated in Fig. 3.3. Bracketing numbers measure the
‘size’ or ‘complexity’ of a class of functions. If N[](ε,F , ‖ · ‖) is small, then F is ‘simple’.
Up to ε-error in the norm ‖ · ‖, all functions in F can be represented by only a few
functions. If N[](ε,F , ‖ · ‖) is large, then F is ‘rich’. The behavior of the functions in F
is so diverse that we need many brackets to represent them well. The size of the bracket
is determined by the norm. The most relevant norms for us are the Lq(P )-norms,
defined as

‖f − g‖Lq(P ) = EX∼P [|f(X) − g(X)|q]1/q =
(∫

|f(x) − g(x)|q dP (x)
)1/q

.

We have the following result.

Theorem 3.3.5. F ⊂ {f : X → R} be a set of functions. Suppose that:

(i) E[supf∈F |f(X)|] < ∞;

(ii) N[](ε,F , L1(P )) < ∞ for every ε > 0.

Then

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
f(Xi) − E[f(X)]

∣∣∣∣∣ →p 0.

Proof. Define

Pn(f) = 1
n

n∑
i=1

f(Xi), P (f) = E[f(X)].

Fix some ε > 0 and choose finitely many ε-brackets {[f
k
, fk]}N(ε)

k=1 as in assumption (ii).
It then holds

sup
f∈F

|Pn(f) − P (f)| ≤ max
1≤k≤N(ε)

sup
f

k
≤f≤fk

|Pn(f) − P (f)| .

Now for any f
k

≤ f ≤ fk,

Pn(f) − P (f) ≤ Pn(fk) − P (f
k
) = Pn(fk) − P (fk) + P (fk − f

k
)

≤ Pn(fk) − P (fk) + ε.
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Using the same argument for a lower bound shows that

Pn(f) − P (f) ≥ −|Pn(f
k
) − P (f

k
)| − ε,

and, thus,

sup
f

k
≤f≤fk

|Pn(f) − P (f)| ≤ |Pn(fk) − P (fk)| + |Pn(f
k
) − P (f

k
)| + ε.

Because f
k
, fk are fixed, the usual law of large numbers gives

sup
f

k
≤f≤fk

|Pn(f) − P (f)| = ε+ op(1).

Furthermore, because N(ε) is finite, the continuous mapping theorem implies that

max
1≤k≤N(ε)

sup
f

k
≤f≤fk

|Pn(f) − P (f)| ≤ ε+ op(1).

The claim follows upon choosing ε arbitrarily small.

We see that we only need to be able to cover the class of functions F with finitely
many brackets (at every scale ε) to establish the uniform law of large numbers. This
fails, for example, if F is the set of all measurable functions f : X → R. This set
of functions is simply too large. However, condition (ii) is satisfied for many sets of
functions. One of the most important examples are parametrized families of functions.

Lemma 3.3.6 (Functions Lipschitz in a parameter). Let Θ ⊆ {‖θ‖ ≤ K} ⊂ Rp and
F = {fθ : θ ∈ Θ} be a parametrized family of functions. Suppose that there is a
function Λ and q ∈ N such that

|fθ(x) − fθ′(x)| ≤ Λ(x)‖θ − θ′‖, E[Λq(X)] < ∞.

Then for any ε > 0, it holds

N[](ε,F , Lq(P )) ≤
(

6K‖Λ‖Lq(P )

ε

)p

.

Proof. Set η = ε/2‖Λ‖Lq(P ). Because Θ ⊆ {‖θ‖ ≤ K}, we can cover it by finitely many
η-balls: Θ ⊆

⋃N(η)
k=1 Bη(θk). In fact, it is known that we need at most N(η) = (3K/η)p

many. Define f
k
(x) = fθk

(x) − Λ(x)η and fk(x) = fθk
(x) + Λ(x)η. Then for any

θ ∈ Bη(θk), we have

f
k
(x) ≤ fθ(x) ≤ fk(x)

and

|fk(x) − f
k
(x)| ≤ 2Λ(x)η.
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Thus,

‖fk − f
k
‖Lq(P ) ≤ 2‖Λ‖Lq(P )η = ε.

We have shown that N(η) = (3K/η)p = (6K‖Λ‖Lq(P )/ε)p brackets are sufficient to
cover F .

The bracketing number of the class is finite for every ε. Hence condition (ii) of
Theorem 3.3.5 is satisfied for such classes. This is quite useful. For example, it allows
us to establish the consistency of MLEs in parametric models.

Example 3.3.7. Let F = {fθ : θ ∈ Θ ⊂ Rp}, be density functions in a parametric
model. A first-order Taylor expansion gives

| log fθ(x) − log fθ′(x)| = |∇ log fθ∗(x)(θ − θ)| ≤ ‖∇ log fθ∗(x)‖‖θ − θ‖,

for some θ∗ on the line segment from θ to θ′, i.e., θ∗ = θ+ t(θ′ − θ) for some t ∈ (0, 1).
We may therefore take Λ(x) = supθ∈Θ ‖∇ log fθ∗(x)‖.

A second common example are monotone functions.

Lemma 3.3.8. Let F = {f : R → [0, 1]} be a set of monotone functions. There is a
constant Kq < ∞ such that

N[](ε,F , Lq(P )) ≤ Kq exp(1/ε).

Proof. The proof is quite technical; see van der Vaart and Wellner (2023, Theorem
2.7.9).

The result can also be applied to functions mapping to any other closed interval, by
centering and scaling the functions. The set of monotone functions seems to be much
larger than the previous example: the bracketing number grows exponentially with
1/ε. Nevertheless, it is finite so that the uniform law of large numbers applies. A host
of results on bracketing numbers of different function classes can be found in van der
Vaart and Wellner (2023, Section 2.7).
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3.3.5 Examples

Proposition 3.3.9. Let fθ, θ ∈ Θ ⊂ Rp, be density functions in a parametric model.
Suppose Θ is bounded, the true parameter θ0 is a well-separated maximizer of the
population criterion M(θ) = E[log fθ(X)], and

E

[
sup
θ∈Θ

‖∇ log fθ(X)‖
]
< ∞,

Then the MLE

θ̂MLE = arg max
θ∈Θ

1
n

n∑
i=1

log fθ(Xi)

is consistent: θ̂MLE →p θ0.

Proof. By Example 3.3.7, Lemma 3.3.6, and Theorem 3.3.5, it holds

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1
log fθ(Xi) − E[log fθ(Xi)]

∣∣∣∣∣ →p 0.

Now the result follows from Theorem 3.3.2.

A sufficient condition for well-separatedness is that the expected Hessian is negative
definite near the maximum:

λmax(E[∇2 log fθ(X)]) < 0, for all ‖θ − θ0‖ < δ.

As a simple corollary, we get the consistency of the ordinary least-squares estimator.

Corollary 3.3.10 (Consistency of OLS estimator). Let Yi = β>Xi + εi be a
linear regression model with E[εi | Xi] = 0 and E[ε2

i | Xi] < C < ∞, and
β0 = arg minβ∈Rp E[(Y − Xβ)2]. If the matrix Σ = E[XX>] ∈ Rp×p is positive
definite with ‖Σ‖ < ∞ and the parameter space is bounded, the OLS estimator

β̂OLS = arg min
β∈Rp

1
n

n∑
i=1

(Yi −Xiβ)2

is consistent: β̂OLS →p β0.

Proof. Note that the OLS estimator is the MLE in a linear regression model with
Gaussian errors. It holds ∇2 log fθ(X) = −XX> and E[XX>] = Σ. Because the latter
is positive definite, the maximum is well separated. Further,

‖∇ log fθ(X)‖ ≤ |Y −X>β|‖X‖ ≤ Y ‖X‖ + sup
β∈B

‖β‖‖X‖2.

The expectation of this is bounded by assumption. Now the result follows from
Proposition 3.3.9.
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As our last example for this section, we establish the consistency of sample quantiles.

Proposition 3.3.11 (Consisteny of sample quantiles). Let

ρα(x) =

α|x| if x ≥ θ,

(1 − α)|x| if x < θ,
and mθ(x) = ρα(x− θ).

The α-quantile of X can be identified as θα = arg minθ∈RE[mθ(X)]. If the minimum
is well-separated, the α-sample quantile

θ̂α = arg min
θ∈R

1
n

n∑
i=1

ρα(x− θ),

is consistent: θ̂α →p θα.

Proof. Let mθ(x) = ρα(x− θ). Note that for θ ≤ θ′ ≤ x, we have

|ρα(x− θ) − ρα(x− θ′)| ≤ α||x− θ| − |x− θ′|| ≤ α|θ − θ′| ≤ |θ − θ′|

by the reverse triangle inequality and α ∈ [0, 1]. A similar argument for the cases
x ≤ θ ≤ θ′ and θ ≤ x ≤ θ′ shows that the conditions of Lemma 3.3.6 are satisfied with
Λ(x) ≡ 1. Now Example 3.3.7, Lemma 3.3.6, and Theorem 3.3.5 yield

sup
θ∈Θ

∣∣∣∣∣ 1n
n∑

i=1
ρα(Xi − θ) − E[ρα(X − θ)]

∣∣∣∣∣ →p 0,

and the result follows from Theorem 3.3.2.

3.3.6 Remarks

The consistency results can be extended in several ways. Compactness of the parameter
space Θ can be relaxed with some additional work. In a first step, we have to prove
that the estimator θ̂n is uniformly tight: for every ε > 0, there is a constant K such
that supn P(θ̂n > K) ≤ ε. The uniform convergence condition

sup
θ∈S

|Mn(θ) −M(θ)| →p 0,

is only needed to hold for all compact subsets S ⊂ Θ. Further, the population criterion,
the loss functions, and the parameter space may change with n. This is commonly the
case for spline models, where the number of basis functions increases with the sample
size. This makes the results more technical but does not fundamentally change the
argument.
We have used bracketing numbers to establish a uniform law of large numbers.

There are other ways to achieve this. Two other prominent methods based on uniform
covering numbers and Rademacher complexity are discussed extensively in my course
on Statistical Learning Theory.
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3.4 Asymptotic normality

As mentioned earlier, consistency should be considered a minimal requirement for any
reasonable estimator. However, many estimators are consistent, and this alone does
not tell us much about the estimators’ quality. To assess accuracy or uncertainty we
have to look at its distribution. The statement θ̂ →p θ0 only tells us that the limiting
distribution is a point-mass, which isn’t very helpful. To get a useful limit, we have to
rescale the estimator in a way that the limiting distribution is non-degenerate. The
central limit theorem suggests

√
n as a natural scaling factor. This is typically the right

scaling when a finite number of parameters are estimated. In the case of estimating a
function, the scaling factor might be different. The limiting distribution is most often
normal:

√
n(θ̂ − θ0) →d N (0,Σ).

To get an idea where this is coming from, we first give an informal argument in a simple
case.

3.4.1 An informal argument

Asymptotic normality is most easily proved in the Z-estimator formulation: Ψn(θ̂) = 0.
Suppose Θ ⊆ R and that ψθ is sufficiently differentiable. Recall the first-order Taylor
expansion of a function f : R → R around a point x0:

f(x) = f(x0) + f ′(x̃)(x− x0),

for some x̃ ∈ [x0, x]. It holds

0 = Ψn(θ̂) = Ψn(θ0) + Ψ′
n(θ̃)(θ̂ − θ0) ⇔

√
n(θ̂ − θ0) =

√
nΨn(θ0)
Ψ′

n(θ̃)
.

By the central limit theorem,

√
nΨn(θ0) = 1√

n

n∑
i=1

ψθ0(Xi) →d N (0,E[ψθ0(X)2]).

For the denominator we expect Ψ′
n(θ̃) →p Ψ′(θ0), because Ψ′

n is a sample average, and
θ̂ →p θ0. This is not immediate because θ̂ is a random sequence that depends on the
data. Taking that as given, Slutsky’s lemma (Lemma 2.3.9) gives

√
n(θ̂ − θ0) =

√
nΨn(θ0)
Ψ′

n(θ̃)
→d N (0,E[ψθ0(X)2]/Ψ′(θ0)2).

3.4.2 Main result

The informal argument took several shortcuts. First, we assumed that the parameter
is one-dimensional. Second, we assumed differentiabilty of ψθ. This is violated, for
example, for the median: ψθ = sign(x− θ). Third, we did not formally prove Ψ′

n(θ̃) →p
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Ψ′(θ0), which is the hardest part.
For a more general result, we first need a generalization of the Taylor expansion to

multivariate functions. For any continuously differentiable f : Rp → Rq, it holds

f(x) = f(x0) + ∇f(x0 + t(x− x0))(x− x0), for some t ∈ (0, 1),

where (∇f(x))kj = ∂fk(x)/∂xj is the Jacobian of f at x. This Taylor expansion (and
high-order versions) is one of the most powerful tools in asymptotic statistics. Assuming
sufficient regularity and X →p X0, we may replace f(X) by f(X0) + Op(‖X − X0‖).
Additionally, we will need something similar to the uniform convergence condition for
the consistency proof. But now we need something stronger, stochastic equicontinuity
of the centered and scaled criterion at θ0:

sup
‖θ−θ0‖≤δn

√
n ‖[Ψn(θ) − Ψ(θ)] − [Ψn(θ0) − Ψ(θ0)]‖ →p 0, for all δn → 0. (3.1)

This is a much stronger condition than uniform convergence, not least because of the√
n-blowup factor.

Theorem 3.4.1 (Asymptotic normality of Z-estimators). Let θ̂ be the solution to
the estimating equation

Ψn(θ̂) = 1
n

n∑
i=1

ψ
θ̂
(Xi) = 0.

(i) The estimator θ̂ is consistent: θ̂ →p θ0.

(ii) The function θ 7→ Ψ(θ) = E[ψθ(X)] is continuously differentiable with invertible
Jacobian Ψ̇(θ0) = ∇θE[ψθ0(X)].

(iii) The stochastic equicontinuity condition (3.1) holds.

Then
√
n(θ̂ − θ0) = −∇Ψ(θ0)−1√

nΨn(θ0) + op(1) (3.2)

and
√
n(θ̂ − θ0) →d N (0,Σ), with Σ = Ψ̇(θ0)−1E[ψθ0(X)ψθ0(X)>]Ψ̇(θ0)−>.

Proof.

• Decompose

0 = Ψn(θ̂) = [Ψn(θ̂) − Ψn(θ0)] + Ψn(θ0)

= [Ψn(θ̂) − Ψn(θ0)] − [Ψ(θ̂) + Ψ(θ0)] + [Ψ(θ̂) − Ψ(θ0)] + Ψn(θ0).
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• We will first show that the difference of the first brackets is negligible. Because
θ̂ →p θ0, there is a sequence δn → 0 such that ‖θ̂ − θ0‖ ≤ δn with probability
going to 1. In this event,∣∣∣[Ψn(θ̂) − Ψn(θ0)] − [Ψ(θ̂) + Ψ(θ0)]

∣∣∣ ≤ sup
‖θ−θ0‖≤δn

‖[Ψn(θ) − Ψ(θ)] − [Ψn(θ0) − Ψ(θ0)]‖

= op(1/
√
n),

by the stochastic equicontinuity condition (3.1).

• For the third term, we have

Ψ(θ̂) − Ψ(θ0) = ∇Ψ(θ̃)(θ̂ − θ0).

Because θ̃ →p θ0, and θ 7→ ∇Ψ(θ) = E[∇ψθ(X)] is continuous, we have ∇Ψ(θ̃) −
∇Ψ(θ0) →p 0 by the continuous mapping theorem. Thus,

Ψ(θ̂) − Ψ(θ0) = ∇Ψ(θ0)(θ̂ − θ0) + op(‖θ̂ − θ0‖).

• We have shown that

0 = [Ψn(θ̂) − Ψn(θ0)] − [Ψ(θ̂) + Ψ(θ0)] + [Ψ(θ̂) − Ψ(θ0)] + Ψn(θ0)

= ∇Ψ(θ0)(θ̂ − θ0) + Ψn(θ0) + op(1/
√
n+ ‖θ̂ − θ0‖),

which is equivalent to
√
n(θ̂ − θ0) = −∇Ψ(θ0)−1√

nΨn(θ0) + op(1 +
√
n‖θ̂ − θ0‖).

The op terms are negligible, and by the central limit theorem and continuous
mapping, the first term converges in distribution to a normal distribution with
variance Σ.

The second condition of the theorem still requires differentiability, but only for the
expectation E[ψθ(X)]. This is fine for the median, because E[sign(X − θ)] = P(X <

θ) − P(X > θ) for all θ. The derivative is 2fX(θ) where p is the density of X. If this
density is continuous and bounded away from zero, condition (ii) is satisfied.
The statement (3.2) says that θ̂ − θ0 is first-order equivalent to a (scaled) sample

average over the functions ψθ0 . First-order equivalence means that the difference is
negligible compared to the term dominating the behavior (here the sample average).
When an estimator is first-order equivalent to a sample average, it is called asymptotically
linear. This is a pleasant property many estimators enjoy. As soon as an estimator
is asymptotically linear, asymptotic normality follows directly from the central limit
theorem.

3.4.3 Conditions for stochastic equicontinuity

Stochastic equicontinuity can be guaranteed with similar tools as for uniform convergence.
We start with a general result that bounds the supremum over differences between a

47



3 M- and Z-estimators

sample average and expectation. Proving this is really hard, so we will not waste our
time with this. See Chapter 19, specifically Corollary 19.35, of Van der Vaart (2000)
for more details.

Lemma 3.4.2. Let F by a class of functions with envelope F , i.e., |f(x)| ≤ F (x)
for all f ∈ F . Then if for some C < ∞, α ∈ (0, 2),

lnN[](ε‖F‖L2(P ),F , L2(P )) ≤ Cε−α,

it holds

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
f(Xi) − E[f(X)]

∣∣∣∣∣ = Op

(‖F‖L2(P )√
n

)
.

We can now state the main result on stochastic equicontinuity of the criterion
functions.

Theorem 3.4.3. Let Fδ = {ψθ −ψθ0 : ‖θ− θ0‖ ≤ δ} and Fδn be an envelope for the
class, i.e., |f(x)| ≤ Fδn(x) for all f ∈ Fδ and all x. Suppose

(i) limδ↘0 ‖Fδ‖L2(P ) = 0.

(ii) lnN[](ε‖Fδ‖L2(P ),Fδ, L2(P )) ≤ Cε−α for some C < ∞, α ∈ (0, 2).

Then the stochastic equicontinuity condition (3.1) holds.

Proof. It holds

Tn := sup
‖θ−θ0‖≤δn

∣∣∣[Ψn(θ̂) − Ψn(θ0)] − [Ψ(θ̂) + Ψ(θ0)]
∣∣∣

= sup
‖θ−θ0‖≤δn

∣∣∣∣∣ 1n
n∑

i=1
[ψθ(Xi) − ψθ0(Xi)] − E[ψθ(X) − ψθ0(X)]

∣∣∣∣∣ .
By our assumption on the bracketing numbers and Lemma 3.4.2,

Tn = Op(‖Fδn‖L2(P )/
√
n) = op(1/

√
n).

The stochastic equicontinuity condition is fairly easy to establish if the estimating
functions ψθ are smooth in the parameter. This is typically the case. However,
smoothness is not necessary. Let’s see one example of each case.

Example 3.4.4 (Smooth models). Consider identifying functions ψθ(x) ∈ Rp where
each component ψθ(x)k satisfies the conditions of Lemma 3.3.6 for some function Λk(x).
It suffices to show that the stochastic equicontinuity condition holds for every component
of the estimating equation. Because

sup
‖θ−θ′‖≤δn

|ψθ(x)k − ψθ′(x)k| ≤ Λ(x)δn,
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so we may take Fδn(x) = Λ(x)δn as the envelope. It holds ‖Fδn‖L2(P ) = O(δn) = o(1)
for every δn = o(1), so condition (i) of Theorem 3.4.3 is satisfied. Then

lnN[](ε‖Fδn‖L2(P ),Fδ, L2(P )) ≤ p ln(6/ε) = O(ε−α)

for any α > 0, and condition (ii) of Theorem 3.4.3 is satisfied.

Example 3.4.5. The median has ψθ(x) = sign(x− θ), which is not continuous. First,
we construct an envelope. For simplicity let Θ = [0, 1]. Then

sup
|θ−θ0|≤δn

| sign(x− θ) − sign(x− θ0)| ≤ sup
|θ−θ0|≤δn

21{x ∈ [θ, θ0]}

≤ 21{x ∈ [θ0 − δn, θ0 + δn]}
=: Fδn(x).

If the density fX of X is continuous and bounded by C < ∞ near the median θ0, it
holds

‖Fδn‖L2(P ) = 2E[1{x ∈ [θ0 − δn, θ0 + δn]}] = 2P(θ0 − δn ≤ X ≤ θ0 + δn) ≤ 2Cδn = o(1),

so condition (i) of Theorem 3.4.3 is satisfied. Condition (ii) follows from Lemma 3.3.8.
In fact, the signs are particularly simple monotone functions, and it is easy to

construct a much smaller bracketing explicitly. Let’s do this for sake of illustration.
Choose an equally spaced grid θj = jε for j = 0, . . . , d1/εe − 1. Define

f
k
(x) = sign(x− θk), fk(x) = sign(x− θk−1).

Because θk−1 ≤ θk and sign(x − θ) is decreasing in θ, it holds f
k

≤ fk. By similar
arguments as before, we get

‖f
k

− f
k
‖L2(P ) ≤ 2P(θk−1 ≤ X ≤ θk) ≤ 2Cε.

Hence, N[](2Cε,Fδ, L2(P )) = O(1/ε), which is exponentially smaller than the bracketing
for all monotone functions.

3.4.4 Examples

Let us apply these results to some common examples. We start with the MLE.
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Proposition 3.4.6. If the assumptions of Proposition 3.3.9 hold and θ 7→ E[∇fθ(X)]
is continuously differentiable,

√
n(θ̂MLE − θ0) →d N (0,Σ),

with

Σ = E[∇2 log fθ0(X)]−1E[∇ log fθ0(X)(∇fθ0(X))>]E[∇2 log fθ0(X)]−1.

Proof. By the assumptions of Proposition 3.3.9, the MLE is consistent and, in view
of Example 3.4.4, the stochastic equicontinuity condition (3.1) holds. The result now
follows from Theorem 3.4.1.

The asymptotic variance consists of a product of three matrices. Both the inverse of
the expected Hessian E[∇2 log fθ0(X)] and the covariance matrix of the scores
E[∇ log fθ0(X)(∇fθ0(X))>] are sometimes called Fisher information matrix. In a
correctly specified model (i.e., Xi ∼ fθ0), the two matrices are the same, which explains
the ambiguity in terminology. In this case, the asymptotic variance simplifies to
Σ = I(θ0)−1 = E[∇2 log fθ0(X)]−1. The Fisher information matrix I(θ0) is a measure
of the amount of information that an observable random variable X carries about
the unknown parameter θ0. The larger the Fisher information, the more information
the data carries about the parameter. Philosophically speaking, it is unlikely that a
parametric model is exactly correct. So to be safe, we should rather use the general
expression for Σ given in the proposition to construct confidence intervals.1
Next, we consider sample quantiles. Recall from Example 3.2.3 that the sample

α-quantile θ̂α can be written as a Z-estimator with ψθ(x) = 1{x ≤ θ} − α.

Proposition 3.4.7. Suppose that the density fX of X has strictly positive,
bounded, and continuous density around its α-quantile θα. Under the conditions of
Proposition 3.3.11, the sample quantile θ̂α satisfies

√
n(θ̂α − θα) →d N (0, α(1 − α)/fX(θα)2).

Proof. We check the conditions of Theorem 3.4.1. The map

θ 7→ E[1{Xi < θ} − α] = P(X < θ) − α

is continuously differentiable at θα with derivative fX(θα), which is bounded away from
zero. This also makes the solution well separated, so that Proposition 3.3.11 gives
consistency θ̂α →p θα. Further,

E[(1{X < θα} − α)2] = P(X < θα) − 2αP(X < θα) + α2 = α− α2 = α(1 − α).

1This expression is sometimes called sandwich formula for the asymptotic variance. In this analogy,
the inverse Hessian’s on the left and right are the bread, and the covariance of scores in between is
the filling.
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The stochastic equicontinuity condition (3.1) is satisfied by the same arguments as in
Example 3.4.5. The result now follows from Theorem 3.4.1.

We see that the sample quantiles are less precise when the density is low around the
true quantile. This makes intuitive sense: if there are very few data near the quantile,
the estimator may pick a value rather far away from the true quantile, just because
it’s the only one around. The density is typically small in the tails of the distribution,
so when α is close to 0 or 1. This is offset only a little by the term α(1 − α), which
is largest for α = 1/2. For example, the normal distribution with α → 0 satisfies
θα = O(−

√
ln(1/α2)) and fX(θα) = O(α2), so the asymptotic variance is of order

O(1/α3).
Interestingly, if fX is uniform on an interval [a, b], the extreme quantiles are easier

to estimate than the median. Taking α → 1, gives θα → b and the asymptotic variance
converges to 0. In fact, one may show max{X1, . . . , Xn} − b = Op(1/n), which is much
faster than the 1/

√
n rate for the median. This is a special property of bounded random

variables, however.

3.4.5 Confidence intervals

Asymptotic normality of estimators is often used to construct confidence intervals. The
theoretical result gives us the limiting distribution of the estimator. This limiting
distribution depends on the unknown distribution P of X, however, so we need to
estimate it. Recall our general result from Theorem 3.4.1. The asymptotic variance is

Σ = Ψ̇(θ0)−1E[ψθ0(X)ψθ0(X)>]Ψ̇(θ0)−1, Ψ̇(θ0) = E[∇ψθ(X)].

The expectations with respect to P can be estimated by sample averages, and unknown
value θ0 can be replaced by the estimator θ̂:

̂̇Ψ = 1
n

n∑
i=1

∇ψ
θ̂
(Xi), Σ̂ = ̂̇Ψ−1

(
1
n

n∑
i=1

ψ
θ̂
(Xi)ψθ̂

(Xi)>
) ̂̇Ψ−1

. (3.3)

Here, we assume that ψθ is differentiable for simplicity. Intuitively, θ̂ converges to θ0
and the sample average converge to the expectation. So the estimated asymptotic
variance should converge to the true value. This is indeed the case, as shown by the
following result.

Proposition 3.4.8. Suppose that the conditions of Theorem 3.4.1 hold and ψθ is
twice continuously differentiable and for some ε > 0,

E

[
sup

‖θ−θ0‖<ε
|∂θj

ψθ(X)|
]
< ∞, E

[
sup

‖θ−θ0‖<ε
|∂θj

∂θk
ψθ(X)|

]
< ∞.

Then the estimator in (3.3) satisfies Σ̂ →p Σ.
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Proof. We first show ̂̇Ψ →p Ψ̇(θ0). It holds

̂̇Ψ = 1
n

n∑
i=1

∇ψ
θ̂
(Xi)

= 1
n

n∑
i=1

∇ψθ0(Xi) + 1
n

n∑
i=1

∇2ψ
θ̃
(Xi)(θ̂ − θ0).

The first term converges to Ψ̇(θ0) because of the law of large numbers. Because
‖θ̂ − θ0‖ < ε with probability going to one, the second can be bounded by

p∑
j=1

p∑
k=1

1
n

n∑
i=1

sup
‖θ̂−θ0‖<ε

|∂θj
∂θk

ψ
θ̃
(Xi)| ×Op(n−1/2) = Op(1) ×Op(n−1/2) = op(1),

because the averages converge to a finite value by the law of large numbers. We have
shown ̂̇Ψ →p Ψ̇(θ0). A similar argument shows(

1
n

n∑
i=1

ψ
θ̂
(Xi)ψθ̂

(Xi)>
)

→p E[ψθ0(X)ψθ0(X)>].

Now the result follows from the continuous mapping theorem.

Now we can piece things together. We know the limit is normal, and we can estimate
the asymptotic variance. This allows us to construct confidence sets S by finding a
solution to ∫

S
φ

θ̂,Σ̂/
√

n
(x) dx = 1 − α,

where φµ,Σ is the N (µ,Σ) density. The typical choice for a single parameter is

ĈI = (θ̂ + Φ−1(α/2)σ̂/
√
n, θ̂ + Φ−1(1 − α/2)σ̂/

√
n), (3.4)

where Φ is the standard normal cdf. Most often, we use α = 0.05, so that Φ−1(0.05/2) ≈
1.96. For multiple parameters, we usually construct the confidence set as an ellipsoid
centered at θ̂ with axes given by the eigenvectors of Σ̂ and lengths given by the square
roots of the corresponding eigenvalues. We may now show that the confidence sets
have the correct coverage probability 1 − α. For simplicity, we restrict ourselves to the
one-dimensional case.

Proposition 3.4.9. If
√
n(θ̂−θ0) →d Z ∼ N (0, σ2) and σ̂ →p σ, then the confidence

interval in (3.4) has asymptotically exact coverage:

P(θ0 ∈ ĈI) → 1 − α.

Proof. We have

P(θ0 ∈ ĈI) = P
(
θ̂ − θ0
σ̂/

√
n

∈ (Φ−1(α/2),Φ−1(1 − α/2))
)
.
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By the continuous mapping theorem (for σ̂ →p σ) and asymptotic normality,
√
n(θ̂ −

θ0)/σ̂ →d Z ∼ N (0, 1). Thus,

P(θ0 ∈ ĈI) → P(Z ∈ (Φ−1(α/2),Φ−1(1 − α/2)))
= Φ(Φ−1(1 − α/2)) − Φ(Φ−1(α/2))
= 1 − α.

3.4.6 Significance tests

Another common application of normality results is hypothesis testing. We will keep
the arguments in this section informal to not waste too much time. Suppose we want
to test the hypothesis H0 : θ0 = θ∗ against the alternative H1 : θ0 6= θ∗. For example,
in regression models, it is common to test whether a coefficient is zero. Consider the
test statistic

T̂ = n(θ̂ − θ∗)>Σ̂−1
∗ (θ̂ − θ∗),

where Σ̂∗ is the estimator from (3.3), but with θ̂ replaced by θ∗. By the law of large
numbers and continuous mapping Σ̂∗ →p Σ under the null-hypothesis. Further, the
asymptotic normality result above gives

√
nΣ−1/2(θ̂ − θ∗) →d Z ∼ N (0, Ip).

And by the continuous mapping theorem,

n(θ̂ − θ∗)>Σ−1(θ0 − θ∗) →d Z
>Z ∼ χ2(p).

We may now construct a test of size α by rejecting the null hypothesis if T̂ > χ2
1−α(p),

where χ2
1−α(p) is the 1 − α quantile of the χ2(p) distribution. For maximum likelihood

estimation, we call this a Wald test, but it works more generally.
For M-estimators, another way to test the hypothesis is to compare the values of the

objective function. Consider the statistic

T̂ = 2n(Mn(θ̂) −Mn(θ∗)).

Assuming sufficient regularity, a Taylor expansion gives

2n(Mn(θ∗) −Mn(θ̂)) = 2n∇Mn(θ̂)(θ∗ − θ̂) + n(θ∗ − θ̂)>∇2Mn(θ̃)(θ∗ − θ̂),

and ∇Mn(θ̂) = 0, because θ̂ is the minimizer. We may show that, under the null,
∇2Mn(θ̃) = ∇2M(θ∗) + op(1), so that

n(θ∗ − θ̂)>∇2Mn(θ̃)(θ∗ − θ̂) →d Q
>Q,

where
Q ∼ N (0, (∇2M(θ∗))−1/2 Σ (∇2M(θ∗))−1/2).
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This limiting distribution is generally complicated. In the special case of the MLE, the
test is called the likelihood ratio test, because

T̂ = 2 log
( ∏n

i=1 fX(Xi; θ̂)∏n
i=1 fX(Xi; θ∗)

)
,

is essentially the log of the likelihood ratio. Under the null, it holds ∇2M(θ∗) = Σ, the
Fisher information. Then the limiting distributions simplify to Q ∼ N (0, I), and again
Q>Q ∼ χ2(p).

3.5 Efficiency

Asymptotic normality results tell us a lot about the quality of an estimator. Estimators
with small asymptotic variance (and no asymptotic bias) are good estimators, because
we can be quite certain about the value of the estimator. Such estimators make very
efficient use of the data.

3.5.1 The idea

To compare the efficiency of two estimators of the same quantity θ0, we can compare
their asymptotic variances. For simplicity, we will focus on the case of scalar θ0.
Suppose we have two estimators θ̂(1), θ̂(2) satisfying

√
n(θ̂(j) − θ0) →d N(0, σj(θ0)2), j = 1, 2.

The asymptotic relative efficiency at θ0 is defined as

ARE(θ̂(1), θ̂(2)) = σ1(θ0)2

σ2(θ0)2 .

Note that the numerical value of this quantity can be different for different values of
θ0. The quantity has two interpretations:

• By comparing a ratio of variances, we compare how concentrated the two
estimators are around the true value. More concentration means less uncertainty,
so the estimator θ̂(1) is more efficient than θ̂(2) if ARE(θ̂(1), θ̂(2)) < 1, and less
efficient if ARE(θ̂(1), θ̂(2)) > 1. With this interpretation, the ARE should rather
be called the ‘asymptotic relative uncertainty’.

• The alternative interpretation explains the name ‘efficiency’. Suppose we want to
know how many observations we need to achieve a certain level of (asymptotic)
precision σj(θ0)2/n ≤ ε. Let nε,j , j = 1, 2 be this number. It holds nε,j =
σj(θ0)2/ε, so that the ratio of the two sample sizes is

nε,1
nε,2

= σ1(θ0)2

σ2(θ0)2 = ARE(θ̂(1), θ̂(2)).
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Thus, the ARE quantifies (asymptotically) how much more/fewer data we need
to achieve the same precision with θ̂(1) compared to θ̂(2).

Example 3.5.1 (Mean vs median for estimating location). Let X1, . . . , Xn be an iid
sample from a density fX(x; θ0) = g(x− θ0), with g symmetric around 0. This is called
a location model. We want to estimate the location parameter θ0. Because of the
symmetry, θ0 is both the mean and the median of X, so we can use both the sample
mean θ̂(1) and the sample median θ̂(2) as estimators. From earlier results, we know

√
n(θ̂(1) − θ0) →d N(0,Var[X]) and

√
n(θ̂(2) − θ0) →d N(0, 1/4fX(θ0)2).

The asymptotic relative efficiency is

ARE(θ̂(1), θ̂(2)) = Var[X]
1/[4fX(θ0)2] ,

whose value depends on the density fX . For example, the ARE computes to 2/π ≈ 0.64
if X ∼ N (θ0, 1). This means that the sample mean is more efficient than the sample
median in this case. From an efficiency point of view, using the median instead of
the sample mean is similar to throwing away about a third of the data. On the other
hand, if X ∼ Laplace(θ0, 1), i.e., g(x) = 1

2e
−|x|, the ARE is 2. Now the median is more

efficient, and using the mean amounts to throwing away half of the data.

3.5.2 Superefficiency

Now consider the Hodges estimator for the location parameter θ0 in the location model
from Example 3.5.1:

θ̂H = Xn × 1
{

|Xn| > n−1/4
}
.

If θ0 6= 0, Xn = θ0 + Op(n−1/2), so 1{|Xn| > n−1/4} = 1 with probability tending
to 1. Thus, θ̂H = Xn with probability tending to 1, and the Hodges estimator is
asymptotically equivalent to the sample mean. If on the other hand θ0 = 0, we have
Xn = Op(n−1/2), so that 1{|Xn| > n−1/4} = 0 with probability tending to 1. Thus
θ̂H = 0 with probability tending to 1, and

nα(θ̂H − θ0) →d 0, for every α > 0 and θ0 = 0.

The estimator converges ‘infinitely fast’ to the true value θ0 = 0. This is called
superefficiency.

From the analysis above it may seem that we should always use the Hodges estimator
instead of the sample mean. It is asymptotically the same as the sample mean if θ0 6= 0,
and it is infinitely better if θ0 = 0. However, this would be very bad advice resulting
from a misuse of asymptotics. To see this, suppose the data form a triangular array
such that X1, . . . , Xn ∼ N (θn, 1) are iid with mean θn = n−1/4/2. For the sample
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mean, the central limit theorem for triangular arrays gives

√
n(Xn − θn) =

√
n

(
1
n

n∑
i=1

Xi − θn

)
→d N(0, 1).

For the Hodges estimator, we have Xn = n−1/4/2 + Op(n−1/2), so that 1{|Xn| >
n−1/4} = 0 with probability tending to 1. Thus, θ̂H = 0 with probability tending to 1,
and

√
n(θ̂H − θn) = −

√
n× n−1/4/2 +Op(1) →p −∞.

This tells us that, for finite samples, the Hodges estimator is terrible if θ0 is in a close
neighborhood of 0.
One can show that superefficiency can only occur at a set of values θ0 of Lebesgue

measure 0. In practice, it is very unlikely that the true value of the parameter is exactly
one of these values. Further, we have seen that superefficiency comes at a cost when
we move away from point-wise convergence. In fact, the superefficiency phenomenon
tells us that point-wise comparisons of estimators are not the right tool to think about
efficiency, but that we have to study the behavior of the estimators for data X1, . . . , Xn,
in which the true parameter θn is in a shrinking neighborhood of θ0.

3.5.3 Comments

There’s much more to say about the efficiency of estimators. You probably already
know about the Cramér-Rao lower bound on the asymptotic variance of an estimator.
Another interesting result is that the normal distribution is optimal as a limit of√
n(θ̂ − θ0). While such results are deep and fundamental, they aren’t immediately

useful when constructing or studying new statistical methods. We thus leave our
discourse to efficiency here and refer to the relevant chapters in Van der Vaart (2000)
for more details.

3.6 Model selection

Formally speaking, a statistical model M for iid data X1, . . . , Xn is a collection of
possible distributions P for X1 (typically indexed by some parameter θ ∈ Θ). In
applications, we often have several plausible models M(1), . . . ,M(K) to choose from.
Models can differ in many ways. Two common examples are differences in the shape
of the distribution (e.g., Normal vs Laplace distribution) or differences in the number
of parameters (e.g., linear models with differing sets of covariates). The goal of model
selection is to find the model that best describes the data.
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3.6.1 AIC and BIC

To simplify our discussion, let us assume that all models under considerations are
parametric and absolutely continuous, i.e,

M(k) = {fk(·; θ) : θ ∈ Θ(k) ⊆ Rpk},

where the fX are probability density functions. The two most common criteria for
model selection are Akaike’s Information Criterion (AIC) and the Bayesian Information
Criterion (BIC):

AIC(M(k)) = −2`n,k(θ̂(k)) + 2p,

BIC(M(k)) = −2`n,k(θ̂(k)) + p logn,

where `n,k(θ) =
∑n

i=1 ln fk(Xi; θ) is the log-likelihood of the data under model M(k),
and θ̂(k) is the corresponding MLE.
The motivation/derivation of these criteria is outlined in, for example, Kauermann

et al. (2021, Chapter 9). The AIC takes a purely predictive view, simply trying to
minimize the KL divergence. The penalty 2p in AIC attempts to correct for the bias
stemming from using the same data for estimating the parameter and approximating
the KL-divergence by the negative likelihood. The BIC is derived from a Bayesian
perspective. It (approximately) selects the model with the highest posterior probability,
treating all models equally likely a priori.

3.6.2 What is the ’right’ model?

AIC and BIC are supposed to help us find the ‘right’ model. But what is ‘right’? A
natural way to measure quality of a model is the Kullback-Leibler divergence between
the true distribution fX(·) of X and the model distribution fk(·; θ(k)):

KL[fX ||fk(·; θ(k))] = E

[
ln fX(X)
fk(X; θ(k))

]
= E [ln fX(X)] − E

[
ln fk(X; θ(k))

]
.

The KL divergence is a measure of how well fk(·; θ(k)) approximates the true distribution
fX(·). Note that the first term on the right is independent of the model, so minimizing
KL-divergence is equivalent to maximizing the expected log-likelihood. The model
M(k) allows for many different parameter values. For the KL divergence to be an
adequate measure of model quality, we define the optimal (within M(k)) parameter
θ

(k)
∗ as the one that minimizes the KL divergence:

θ
(k)
∗ = arg min

θ∈Θ(k)
KL[fX ||fk(·; θ)].

Now it is natural to define the ‘best’ model among M(1), . . . ,M(K) as the one where
θ

(k)
∗ gives the smallest divergence:

k∗ = arg min
k=1,...,K

KL[fX ||fk(·; θ(k)
∗ )].
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This choice is not feasible in practice because we know neither the true distribution
fX(·) nor the true parameter θ(k)

∗ . It also isn’t guaranteed to be unique and quite often
it is not. For example, suppose M(1) is nested in M(2), i.e., M(1) ⊆ M(2). Then if
k∗ = 1 is optimal, k∗ = 2 has to be optimal as well. An example is a linear regression
model with and without an intercept term, or with and without a certain covariate. If
this is the case, we often prefer the more parsimonious model (the one with smaller
pk) and call this the ‘right’ model. Parsimonious models are less likely to overfit, so
that might help on finite samples.

3.6.3 Selection consistency

Both AIC and BIC are derived from reasonable principles. But what mathematical
guarantees do they provide? The most important property of a model selection criterion
is selection consistency. A model selection criterion is called selection consistent if it
selects the ‘right’ model with probability tending to 1 as the sample size n tends to
infinity.

Let us now turn to the question of selection consistency. By standardizing the AIC
and BIC by 1/2n, we can cast them into the form

IC(M(k)) = − 1
n
`n,k(θ̂(k)) + λn,k,

where λn,k ∈ R≥0 is some penalty term, and select the model with index

k̂ = arg min
k=1,...,K

IC(M(k)).

The AIC has λn,k = pk/n and the BIC has λn,k = (pk/n) lnn.
There is nothing special about the likelihood when it comes to model selection.

It is appropriate when parameters have been estimated by the MLE. In fact, their
motivation/derivation and theoretical guarantees do not apply when prameters are
estimated differently. It will be both simpler and more general to consider general
M-estimators where

θ̂(k) = arg min
θ∈Θ(k)

Mn,k(θ), θ
(k)
∗ = arg min

θ∈Θ(k)
Mk(θ).

The criterion Mn,k(θ) is a generalization of the negative averaged log-likelihood. The
set of optimal models is defined as

K∗ = arg min
k=1,...,K

Mk(θ(k)
∗ ).

For this to make sense, the criteria M1, . . . ,MK should be comparable, for example
the square loss applied to different regression models. In practice, we pick the model
with index

k̂ = arg min
k=1,...,K

Mn,k(θ̂(k)) + λn,k.
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While this is not guaranteed to be unique, it typically is in practice. We shall just
assume that it is unique from now on.

Theorem 3.6.1 (Weak selection consistency). Suppose that:

(i) The conditions of Theorem 3.3.2 hold for every model M(k).

(ii) The penalties satisfy maxk λn,k → 0.

Then P(k̂ ∈ K∗) → 1 as n → ∞.

Proof. The statement k̂ /∈ K∗ is equivalent to

min
k∈K∗

Mn,k(θ̂(k)) + λn,k ≥ min
k /∈K∗

Mn,k(θ̂(k)) + λn,k,

which implies

max
k∈K∗

[Mn,k(θ̂(k)) −Mk(θ̂(k))] + max
k∈K∗

Mk(θ̂(k))

≥ min
k /∈K∗

[Mn,k(θ̂(k)) −Mk(θ̂(k))] + min
k /∈K∗

Mk(θ̂(k)) + o(1).

Observe that∣∣∣∣max
k∈K∗

[Mn,k(θ̂(k)) −Mk(θ̂(k))]
∣∣∣∣ ≤ max

k
sup

θ∈Θ(k)
|Mn,k(θ) −Mk(θ)| = op(1),∣∣∣∣min

k∈K∗
[Mn,k(θ̂(k)) −Mk(θ̂(k))]

∣∣∣∣ ≤ max
k

sup
θ∈Θ(k)

|Mn,k(θ) −Mk(θ)| = op(1),

by the uniform convergence condition and the fact that a finite maximum is a continuous
map. The preceding display then implies

max
k∈K∗

Mk(θ̂(k)) ≥ min
k /∈K∗

Mk(θ̂(k)) + op(1).

Using continuity of Mk and the fact that θ̂(k) →p θ
(k)
∗ , we get

max
k∈K∗

Mk(θ(k)
∗ ) ≥ min

k /∈K∗
Mk(θ(k)

∗ ) + op(1).

This event has probability tending to 0 since the definition of K∗ implies

max
k∈K∗

Mk(θ(k)
∗ ) < min

k /∈K∗
Mk(θ(k)

∗ ) + η

for some η > 0.

Condition (ii) is clearly satisfied for both AIC and BIC, so both are consistent in the
sense of the theorem. Note that the proof even applies to λn,k = 0; penalties are not
even necessary for this type of consistency. It is considered weak, because it does not
distinguish between models that are equally close to the true model. For example, if
M(1) and M(2) are nested, the theorem does not tell us which one is selected. Take
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for example the problem of selecting the covariates in a linear model. If the response
is only related to the first covariate. Weak consistency does not tell us that the model
with only the first covariate is selected. Any model that includes the first covariate
may be selected. This is quite unsatisfactory.
In practice, we prefer models that are parsimonious, i.e., have fewer parameters. It

may look like both AIC and BIC do this, but that’s not the case. As we shall see,
the AIC does not necessarily select the optimal model with the fewest parameters
asymptotically, but the BIC does. The key difference is that nλn,k → ∞ for the BIC,
but not for the AIC.

Theorem 3.6.2 (Selection consistency). Suppose that, in addition to the conditions
of Theorem 3.6.1, the following holds:

(i) The index k∗ = arg mink∈K∗ Mk(θ(k)
∗ ) + λn,k is unique (i.e., there is a unique

most parsimoniuos model).

(ii) It holds Mn,k(θ(k)
∗ ) = Mn,k′(θ(k′)

∗ ) almost surely for every k, k′ ∈ K∗.

(iii) The penalties satisfy n(λn,k∗ − λn,k) → −∞ for all k ∈ K∗ \ {k∗}.

(iv) It holds maxk ‖θ̂(k) − θ
(k)
∗ ‖ = Op(n−1/2).

(v) Each Mn,k is twice continuously differentiable and supθ∈Θ(k) ‖∇2Mn,k(θ)‖ =
Op(1).

Then P(k̂ = k∗) → 1 as n → ∞.

Condition (ii) implies that the set of all optimal models are all equivalent when
evaluated at the optimal parameter. In GLMs, for example, that’s the case when there
is a unique optimal parameter θ∗ in the model that includes all covariates. Condition
(iii) requires that the penalties λn,k don’t vanish too fast. Condition (iv) asks for the
typical convergence rate of the M-estimator. Condition (v) is a technical condition,
similar to a uniform law of large numbers for the Hessian matrix of the criterion.

Proof. Because of Theorem 3.6.1 it suffices to show that k̂ selects the right model when
restricted to the set K∗. The union bound gives

P(k̂ ∈ K∗ \ {k∗}) ≤
∑

k∈K∗\{k∗}
P(k̂ = k),

so it is enough to show that P(k̂ = k) → 0 for any k ∈ K∗ \ {k∗}. Let k be one such
index. Then the event k̂ = k implies

Mn,k(θ̂(k)) + λn,k ≤ Mn,k∗(θ̂(k∗)) + λn,k∗

⇔ n[Mn,k(θ̂(k)) −Mn,k∗(θ̂(k∗))] ≤ n[λn,k∗ − λn,k].

For the terms on the left-hand side, a Taylor expansion and assumptions (iv) and (v)
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give

Mn,k(θ̂(k))

= Mn,k(θ(k)
∗ ) + ∇Mn,k(θ̂(k))︸ ︷︷ ︸

=0

(θ̂(k) − θ
(k)
∗ ) + 1

2(θ̂(k) − θ
(k)
∗ )>∇2Mn,k(θ̃(k))(θ̂(k) − θ

(k)
∗ )

= Mn,k(θ(k)
∗ ) +Op(n−1),

and similarly for Mn,k∗(θ̂(k∗)). By assumption (ii), we thus have n[Mn,k(θ̂(k)) −
Mn,k∗(θ̂(k∗))] = Op(1). Since n[λn,k∗ − λn,k] → −∞ by assumption, the event k̂ = k

has probability tending to 0.

The AIC does not meet condition (iii) and it is not selection consistent in the sense
of the theorem. The BIC does meet condition (iii) and is selection consistent.

3.6.4 Error probabilities

We now have a more fine-grained look at the behavior of model selection procedures.
While it’s great that the probability of selecting the wrong model goes to zero,
asymptotically, it may do so very slowly. We can get a clearer picture by exploiting
distributional limits.
We consider two types of error probabilities corresponding to the two types of

consistency. The first is the probability of selecting a model k /∈ K∗.

Proposition 3.6.3. Let k /∈ K∗. Let the conditions of the previous theorem hold,
define ηk = Mk(θ(k)

∗ ) −Mk∗(θ(k∗)
∗ ) > 0 and suppose

[Mn,k∗(θ(k∗)
∗ ) −Mn,k(θ(k)

∗ )] − ηk →d N (0, σ2
k),

√
n(λn,k∗ − λn,k) → 0.

Then

P(k̂ = k) ≤ Φ
(

−
√
nηk

σk

)
+ o(1),

where Φ is the standard normal CDF.

Proof. Using arguments as in the previous proof, we may show that k̂ = k implies
√
n[Mn,k(θ(k)

∗ ) −Mn,k∗(θ(k∗))] +Op(n−1/2) ≤
√
n[λn,k∗ − λn,k]

⇔
√
n[Mn,k(θ(k)

∗ ) −Mn,k∗(θ(k∗)) − ηk] + op(1) ≤ −
√
nηk.

Using the central limit theorem and Slutsky’s lemma, the left-hand side converges in
distribution to a N (0, σ2

k) random variable. The result follows.

The proposition is not much more helpful in a precise sense, since we don’t know
how fast the o(1) term goes to zero. How fast this remainder vanishes depends on
how many moments of the Mn,k exist. Let’s ignore this for now and take the normal
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approximation as exact. The error probability Φ(−
√
nηk/σk) decays exponentially fast

in n, so selecting a specific model k /∈ K∗ is very unlikely. However, there potentially
are many such models, so the error probabilities over all k /∈ K∗ accumulates. For
exhaustively search through GLMs with p covariates, for example, there are 2p − 1 such
models. For the error probability to remain small, we then need p � n.
We move on to the second error: selecting a model k ∈ K∗ that isn’t maximally

parsimonious.

Proposition 3.6.4. Let k ∈ K∗ but k 6= k∗. Let the conditions of the previous
theorem hold, and suppose for all k,

sup
θ∈Θ(k)

‖∇2Mn,k(θ) − ∇2Mk(θ)‖ = op(1),

and
√
n[∇2Mk(θ(k)

∗ )]1/2(θ̂(k) − θ
(k)
∗ ) →d Zk.

Then

P(k̂ = k) ≤ P
(
‖Zk∗‖2 − ‖Zk‖2 > −2n[λn,k∗ − λn,k]

)
+ o(1).

Proof. Define

Qn,k = (θ̂(k) − θ
(k)
∗ )>∇2Mk(θ(k)

∗ )(θ̂(k) − θ
(k)
∗ ).

Following the arguments from the proof of Theorem 3.6.2, the event k̂ = k implies

n[Qn,k∗ −Qn,k∗ ] + op(1) ≤ −2n[λn,k∗ − λn,k].

The left-hand side converges in distribution to ‖Zk∗‖2 − ‖Zk‖2 by the continuous
mapping theorem and Slutsky’s lemma. The result follows.

The approximate error probability is somewhat unwieldy. To simplify the discussion,
observe that ‖Zk∗‖2 − ‖Zk‖2 ≤ ‖Zk∗‖2 + ‖Zk‖2 := Wk, and that the right-hand side is
a weighted sum of χ2(1) random variables. Such variables satisfy the tail bound

P(|Wk| > t) ≤ exp(a− bt),

for some a, b > 0. Hence, the error probability decays exponentially fast in n|λn,k∗−λn,k|.
For the AIC, we have n|λn,k∗ − λn,k| = pk∗ − pk which is constant. So indeed the
probability for selecting a model in k ∈ K∗ that isn’t parsimonious enough does not
vanish. For the BIC, we have n|λn,k∗ − λn,k| = (pk∗ − pk) lnn, so

P(|Wk| > 2n|λn,k∗ − λn,k|) exp(a− 2b|pk∗ − pk| lnn) ≤ ean−2b|pk∗ −pk|.

This decay is polynomial in n. This is still small enough when comparing only a finite
number of models k ∈ K∗ and n is sufficiently large. If the selection criterion is used
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to search exhaustively through many models, stronger penalties are needed. Taking
λn,k = pkn

1/4 for example, the error probabilities decay similar to exp(−n1/4).

63



4 Estimators as functionals

We now take a different perspective on statistical methods, which often proves useful.
It certainly will in later chapters.

4.1 Introduction

Recall that most statistical methods can be described as functions that map data to
estimates. In this framework, the quantity we want to estimate is somehow detached
from the estimator. Now observe that the data can be equivalently be represented
by the empirical measure Pn = n−1∑n

i=1 δXi , where δx denotes the Dirac measure1

at x. We can now think of the estimator as a functional T that maps the empirical
distribution to an estimate. Quite often, the target quantity is then the same functional
T applied to the true distribution. Let us first defined what a functional is.

Definition 4.1.1 (Functional). A statistical functional is a map T : P → Rp,
where P is a set of probability measures.

Let’s see some examples.

Example 4.1.2 (Sample mean). The sample mean can be written as

T (Pn) =
∫
x dPn(x) = 1

n

n∑
i=1

Xi,

and the true mean as

T (P ) =
∫
x dP (x) = EP [X].

Example 4.1.3 (M-estimator). An M-estimator can be written as

T (Pn) = arg min
θ∈Θ

∫
mθ(x) dPn(x) = arg min

θ∈Θ

1
n

n∑
i=1

mθ(Xi),

and the true parameter as

T (P ) = arg min
θ∈Θ

∫
mθ(x) dP (x) = arg min

θ∈Θ
EP [mθ(X)].

1The Dirac measure δx is defined as δx(A) = 1(x ∈ A) and represents a point-mass at x.
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You can work out a few more examples for yourself as an exercise. A common
property among reasonable statistical functionals is Fisher consistency.

Definition 4.1.4 (Fisher consistency). Let P = {Pθ : θ ∈ Θ} be a statistical model
indexed by the parameter θ. A statistical functional T is called Fisher consistent
if θ = T (Pθ) for all Pθ ∈ P.

We can always write the target quantity as a functional of the true distribution P .
Estimators that are constructed by plugging in the empirical distribution Pn in the
same functionals are so common that they have a name.

Definition 4.1.5 (Plug-in estimators). Let T be a statistical functional. An
estimator of T (P ) is called a plug-in estimator if it can be written as T (Pn).

4.2 von Mises calculus

Now let’s see, first informally, how this view on statistical methods can be useful. By
the Glivenko-Cantelli theorem

‖Pn − P‖∞ := sup
x∈Rd

|Pn((−∞, x]) − P ((−∞, x])| →p 0,

so we know that the empirical measure converges to the true distribution in a certain
sense. This suggests that plug-in estimators should be consistent if the functional T
is continuous with respect to the Kolmogorov distance ‖ · ‖∞. But we can say more.
Because Pn is close to P , we may hope that a Taylor-like expansion of T around P
tells us something about the behavior of the plug-in estimator T (Pn). This is the idea
of von Mises calculus. A first order expansion would look something like

T (Pn) − T (P ) = T ′
P (Pn − P ) + o(‖Pn − P‖∞),

so the first order behavior is the same as that of T ′
P (Pn − P ). This term needs some

explanation.
Recall that the derivative of a function f(x) with respect to a vector x is the gradient

∇f(x), a function mapping x to another vector. The first order Taylor-expansion of f
around x is

f(x+ h) = f(x) + ∇f(x)h+ o(‖h‖),

where h 7→ ∇f(x)h is a linear function of h that depends on x. The situation is similar
for functionals. The first-order term T ′

P (h) is a linear functional T ′
P of the difference h

that depends on P . As we shall see, linear functionals in this context are maps of the
form

T ′
P (Pn − P ) =

∫
ρP (x) dPn(x) = 1

n

n∑
i=1

ρP (Xi),
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for some function ρP with EP [ρP (X)] = 0.
The first order expansion of T (Pn) around T (P ) is a sample average with zero mean,

which we understand well. In particular, the estimator should be consistent, and
asymptotically normal with asymptotic variance Var[ρP (X)]. For the remainder of
the expansion to be negligible for

√
n-asymptotic normality, we require ‖Pn − P‖∞ =

OP (n−1/2), which will be proven later in this chapter (Lemma 4.4.1). In that case, the
estimator is asymptotically linear :

T (Pn) − T (P ) = 1
n

n∑
i=1

ρP (Xi) + op(n−1/2).

The function ρP is called the influence function, because ρP (Xi) characterizes the
influence of the observation Xi on the estimator (to first order). It will play a bigger
role in robust statistics later in the course.

4.3 Derivatives of functionals

The above considerations were only conceptual, because we haven’t yet defined what
the derivative of a functional is. It’s a bit more involved than for functions, but the idea
is the same. There are several generalizations of a derivative on general metric spaces.
They usually agree when applied to Euclidean spaces, but differ in more general spaces.
We shall only consider the space of probability measures here.

Definition 4.3.1 (Gateaux derivative). The Gateaux derivative of T at P in
direction Q is

T ′
P (Q) = lim

t→0

T ((1 − t)P + tQ) − T (P )
t

=
[
d

dt
T ((1 − t)P + tQ)

]
t=0

.

The map T is called Gateaux differentiable at P if the limit exists for all Q.

This is indeed a linear map, for T ′
P (a1Q1 +a2Q2) = a1T

′
P (Q1) +a2T

′
P (Q2) by the usual

rules of the derivative with respect to t. The Gateaux derivative is nice, because it
makes calculations easy.

Example 4.3.2 (Expectation). To warm up, consider the expectation functional
T (P ) = EP [g(X)] =

∫
g(x)dP (x) for some g. We have

T ((1 − t)P + tQ) − T (P )
t

= (1 − t)
∫
g(x) dP (x) + t

∫
g(x) dQ(x) −

∫
g(x) dP (x)

t

=
∫
g(x) dQ(x) −

∫
g(x) dP (x) = EQ[g(X)] − EP [g(X)].

Thus

T ′(Pn − P ) = 1
n

n∑
i=1

g(Xi) − EP [g(X)] = 1
n

n∑
i=1

ρP (Xi),
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with ρP (x) = g(x) −EP [g(X)]. In this case, the Taylor expansion is in fact an identity,

T (Pn) − T (P ) = 1
n

n∑
i=1

g(Xi) − EP [g(X)],

so this was a nice exercise, but not very enlightening.

Example 4.3.3 (Variance). Now consider the variance functional

T (P ) = EP [X2] − EP [X]2 =
∫
x2dP (x) −

(∫
xdP (x)

)2
.

We have

d

dt

∫
x2d[(1 − t)P (x) + tQ(x)] = d

dt
(1 − t)

∫
x2 dP (x) + d

dt
t

∫
x2 dQ(x)

=
∫
x2 dQ(x) −

∫
x2 dP (x).

Further, using df(x)2/dx = 2f(x)f ′(x),

d

dt

(∫
xd[(1 − t)P (x) + tQ(x)]

)2

= 2
(∫

x d[(1 − t)P (x) + tQ(x)]
)(∫

x dQ(x) −
∫
x dP (x)

)
.

Together this gives[
d

dt
T ((1 − t)P + tQ)

]
t=0

=
∫
x2dQ(x) −

∫
x2dP (x) − 2

(∫
x dP (x)

)(∫
x dQ(x) −

∫
x dP (x)

)
= EQ[X2] − EP [X2] − 2EP [X](EQ[X] − EP [X]).

Hence

T ′
P (Pn − P ) = 1

n

n∑
i=1

X2
i − EP [X2] − 2EP [X]

(
1
n

n∑
i=1

Xi − EP [X]
)

= 1
n

n∑
i=1

ρP (Xi),

where ρP (x) = x2 − EP [X2] − 2EP [X](x − EP [X]) has EP [ρP (X)] = 0. As in
Example 2.3.12, we may assume that EP [X] = 0. Then we expect T (Pn) to be
asymptotically normal with asymptotic variance

Var[ρP (X)] = E
[
(X2 − EP [X2])2

]
= E[X4] − 2E[X2]E[X2] + E[X2]2

= E[X4] − E[X2]2,

as already shown in Example 2.3.12.
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Example 4.3.4 (Z-estimators). Consider the functional T (P ) = θP , where θP is the
unique solution of

∫
ψθ(x)dP (x) = 0 for some function ψ. The Z-estimator can be

written as the plug-in estimator: T (Pn) = θ̂, where θ̂ solves
∫
ψθ(x) dPn(x) = 0. Define

θt as the solution of
∫
ψθt(x) d[(1 − t)P (x) + tQ(x)] = 0. Let’s take the derivative of

this identity:

0 = d

dt

∫
ψθt(x) d[(1 − t)P (x) + tQ(x)]

= d

dt
(1 − t)

∫
ψθt(x) dP (x) + d

dt
t

∫
ψθt(x) dQ(x)

= (1 − t) d
dt

∫
ψθt(x) dP (x) −

∫
ψθt(x) dP (x) + t

d

dt

∫
ψθt(x) dQ(x) +

∫
ψθt(x) dQ(x),

which evaluated at t = 0 gives

0 =
[
d

dt

∫
ψθt(x) dP (x)

]
t=0

+
∫
ψP (x) d[Q(x) − P (x)].

Rewriting d/dt = (d/dθt) × (dθt/dt), we get

0 = ∇θ

∫
ψθP

(x) dP (x) × dθt

dt

∣∣∣∣
t=0

+
∫
ψP (x) d[Q(x) − P (x)].

Now observe that

dθt

dt

∣∣∣∣
t=0

= lim
t→0

θt − θ0
t

= lim
t→0

T ((1 − t)P + tQ) − T (P )
t

,

is the quantity we are interested in. Noting that
∫
ψθP

(x) dP (x) = 0 and solving for
dθt/dt we get

lim
t→0

T ((1 − t)P + tQ) − T (P )
t

= −(∇EP [ψθP
(X)])−1EQ[ψθP

(X)],

so in particular,

T ′
P (Pn − P ) = −(∇EP [ψθP

(X)])−1 1
n

n∑
i=1

ψθP
(Xi) = 1

n

n∑
i=1

ρP (Xi),

with ρP (x) = −E[∇ψθP
(X)]−1ψθP

(x). This suggests that Z-estimators are asymptotically
normal with the same asymptotic variance (of course) that we had already derived in
Theorem 3.4.1.

I intentionally used careful wording. The calculations suggest asymptotic normality
with a certain asymptotic variance. The calculations are not a proof, but they give us
a quick idea of the estimator’s asymptotic behavior. To make the calculations more
formal, we need a stronger notion of a derivative. The Gateaux derivative assumes
takes perturbations of P in a fixed direction Q. However, our first-order expansions are
in the direction of Qn = Pn, which is a sequence of different directions. This motivates
the following definition.
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4 Estimators as functionals

Definition 4.3.5 (Fréchet derivative). The functional T is called Fréchet
differentiable at P if there is a continuous, linear map h 7→ T ′

P (h) such that
for every sequence Qn with ‖Qn − P‖∞ → 0,a

T (Qn) − T (P ) − T ′
P (Qn − P ) = o(‖Qn − P‖∞).

aWe shall work with the Kolmogorov metric d(P1, P2) = ‖P1 − P2‖∞ here, even though it is
slightly stronger than necessary for our purposes.

It is easy to verify that Fréchet differentiability implies Gateaux differentiability, but
not vice versa. A common strategy is to compute T ′

P as the Gateaux derivative, and
then show that it is also a Fréchet derivative. If we succeed, the informal derivations
above can be made rigorous. Establishing Fréchet differentiability is often challenging
and technical. Unless the influence function and higher order terms are bounded, it
often requires stronger regularity conditions and more effort than our arguments in the
previous sections. Things may get a little easier by considering Hadamard derivatives,
which are weaker than Fréchet derivatives, but stronger than Gateaux derivatives. We
will not go into the details here, but take Fréchet differentiability for granted in the
formal results ahead.

4.4 Formal results

We start by proving an important intermediate result.

Lemma 4.4.1. It holds ‖Pn − P‖∞ = Op(n−1/2).

Proof. Observe that

‖Pn − P‖∞ = sup
x∈Rd

∣∣∣∣∣ 1n
n∑

i=1
1{Xi ≤ x} − E[1{X ≤ x}]

∣∣∣∣∣ .
We may show as in the proof of the Glivenko-Cantelli theorem that the class of
functions F = {1(· ≤ x) : x ∈ Rd} has envelope F (x) ≡ 1 and bracketing number
N[](ε,F , L1(P )) = O(ε−d). Let [f, f ] be one of the brackets. Because any f ∈ F
satisfies 0 ≤ f ≤ 1, we may assume that the bracket satisfies |f − f | ≤ 1. Then

E[|f(X) − f(X)|2] ≤ E[|f(X) − f(X)|] ≤ ε.

Hence, the L2(P )-size of the brackets is at most
√
ε. It follows that N[](ε,F , L2(P )) =

O(ε−2d) and by Lemma 3.4.2, ‖Pn − P‖∞ = Op(n−1/2).

Next we justify the form of the Fréchet derivative as a sample average over the
influence function.
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4 Estimators as functionals

Lemma 4.4.2. Suppose that T is Fréchet differentiable at P . Then the derivative
takes the form

T ′
P (Q− P ) = EQ[ρP (Xi)]

for some function ρP with EP [ρP (X)] = 0.

Proof. Let T ′
P (Q) be the Fréchet derivative of T at P . Define ρP (x) = T ′

P (δx) −T ′
P (P ),

where δx is the Dirac measure at x. First suppose that Q can be written as Q = QN =∑N
i=1 aiδxi with

∑n
i=1 ai = 1 and some x1, . . . , xN ∈ X . Because the map h → T ′

P (h) is
linear, we have

T ′
P (Qn − P ) =

N∑
i=1

aiT
′
P (δxi) − T ′

P (P ) =
N∑

i=1
aiρP (xi) = EQN

[ρP (xi)].

Because we can approximate any probability measure Q by a sequence of measures
of the form QN arbitrarily well, continuity of T ′

P and the expectation functional Q 7→∫
ρP (x)dQ(X), implies that the same holds for any Q. Finally, observe EP [ρP (X)] =

T ′
P (P − P ) = T ′

P (0) = 0 by linearity of T ′
P .

We can now state the main theorem of this chapter.

Theorem 4.4.3. Suppose that T is Fréchet differentiable at P and that the influence
function ρP (X) has finite variance. Then the plug-in estimator T (Pn) is consistent,

T (Pn) →p T (P ),

and asymptotically normal,
√
n(T (Pn) − T (P )) →d N (0,Var[ρP (X)]).

Proof. By Fréchet differentiability, we have

T (Pn) − T (P ) = T ′
P (Pn − P ) + op(‖Pn − P‖∞).

By Lemma 4.4.1, we have ‖Pn −P‖∞ = Op(n−1/2), so the remainder term is op(n−1/2).
By Lemma 4.4.2, the first order term is a sample average of the influence function,
which gives

T (Pn) − T (P ) = 1
n

n∑
i=1

ρP (Xi) + op(n−1/2).

Because ρP has finite variance and mean zero, the law of large numbers give consistency
T (Pn) − T (P ) = op(1). Further, the central limit theorem and Slutsky’s lemma
(Lemma 2.3.9) imply asymptotic normality.
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4 Estimators as functionals

4.5 Higher-order expansions

Rarely, a higher-order expansion is useful. A second-order expansion would look like

T (Pn) − T (P ) = T ′
P (Pn − P ) + 1

2T
′′
P (Pn − P,Pn − P ) + o(‖Pn − P‖2

∞),

where (h1, h2) 7→ T ′′
P (h1, h2) is a bilinear map, explained in a second. On the one

hand, this expansion reveals the higher-order behavior of the estimator, beyond the
asymptotically linear part. If the first order term is zero, however, the second order
term is the leading term, and required to understand the behavior of the estimator.
Bilinear maps in this context are of the form

T ′′
P (Pn − P,Pn − P ) =

∫ ∫
ρ̃P (x, y)dPn(x)dPn(y) = 1

n2

n∑
i=1

n∑
j=1

ρ̃P (Xi, Xj),

for some function ρ̃P (x, y) that is symmetric (ρ̃P (x, y) = ρ̃P (y, x)) and satisfies
E[ρ̃P (x,X)] = 0. A double sum over a kernel ρP is called a V-statistic and closely
related to U-statistics discussed later in the course. The statistic is called degenerate if
E[ρP (x,X)] = 0 as above. Degenerate V-statistics converge to non-normal limits with
much more complicated distribution. We will leave it at this for now.
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5 Robust statistics

The field of robust statistics developed around the 1970s, but is still active today. Here,
robustness refers to the resilience of a statistical method against contamination of
the data through outliers. An outlier is an observation that comes from a different
distribution than the bulk of the data. Outliers can be caused by measurement errors,
data entry errors, or they can be genuine observations that are just very different from
the rest of the data.

5.1 Motivation

To motivate the concepts ahead, let us start with simple examples. Consider a sample
X1, . . . , Xn ∈ R of size n from a distribution P . We are interested in estimating the
mean θ = E[X1]. The sample mean is the natural estimator for θ: θ̂ = 1

n

∑n
i=1Xi.

Now suppose that our sample has been contaminated by an outlier. That is, one of
the observations Xi is not from the distribution P but from a different distribution P ′.
For simplicity, let’s assume that Xn has been replaced by X ′

n ∼ P ′. The sample mean
of the contaminated sample is

θ̂′ = 1
n

n−1∑
i=1

Xi + 1
n
X ′

n.

Now ask yourself a first question: how much does θ̂′ differ from θ̂ if X ′
n is chosen

maximally far away from the rest of the data? The answer is: a lot. In fact, taking
X ′

n → ∞, we have |θ̂ − θ̂′| → ∞. So if we’re unlucky, a single outlier can completely
ruin our estimate! We conclude that the sample mean is not robust against outliers.
Now consider the cumulative probability θ = F (x) for some x ∈ R and the

corresponding estimator

θ̂ = 1
n

n∑
i=1
1{Xi ≤ x}.

The estimator on the contaminated sample is

θ̂′ = 1
n

n−1∑
i=1

1{Xi ≤ x} + 1
n
1{X ′

n ≤ x}.

Stop for a moment and ask yourself: For which values of Xn, X
′
n does θ̂ differ most

from θ̂′ and by how much? First observe that if Xn, X
′
n ≤ x or Xn, X

′
n > x, the

estimate does not change at all: θ̂′ = θ̂. A difference only arises when Xn ≤ x < X ′
n or

X ′
n ≤ x < Xn. In this case, the estimated probability changes at most by 1/n, which is
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5 Robust statistics

less than the typical statistical Op(1/
√
n) error. The estimator here is robust against

the outlier.
Now let’s ask a second question. How many of the observations can be outliers

before the estimate is completely ruined? For the sample mean, a single estimate was
enough. For the cumulative probability, suppose for simplicity that θ̂ = 1/2. Note that
we have |θ̂ − θ̂′| ≤ 1/2 since θ̂′ ∈ [0, 1]. The estimator is completely ruined when this
bound is attained. This is the case if we shift all n/2 observations to the left of x to
the right or vice versa. That is, half of the entire sample must be contaminated to ruin
the estimate. Again, the probability estimator is much more robust than the sample
mean.

As a potential third question, we may ask: If an ε-fraction of the sample has been
contaminated by outliers, how much does the estimate change in the worst case? For
the sample mean, the answer is still ∞. For the probability estimator, the answer is
min(dεne/n, 1/2).1 Yet again, we find that the probability estimator is more robust
than the sample mean.
In what follows we will formalize these ideas in a way that allows us to study more

general estimators.

5.2 Contamination models

We approach the study of robustness through the lens of estimators as statistical
functionals. Let θ0 = T (P ) be the parameter of interest and θ̂ = T (Pn) the corresponding
estimator. From this perspective, robustness of an estimator is primarily a property of
the functional T . This allows us to gain deep insights from studying the functional T
itself, rather than dealing with a specific realization of the sample.
There are multiple ways to define quantitative measures of robustness. They all

follow similar ideas and lead to qualitatively similar interpretations. It all starts with
the concept of contamination. Let P(X ) be the set of all probability measures on the set
X and d(P, P ′) be some measure of distance between two distributions P, P ′ ∈ P(X ).
Most generally, the contamination neighborhood of P ∈ P(X ) is defined as the set

Pε(P,X ) = {P ′ ∈ P(X ) : d(P, P ′) ≤ ε}. (5.1)

This collects the set of distributions P ′ that are ε-close to P in the distance d. We may
now ask how much the value of T (P ) changes when P is replaced by the worst-case
distribution in the contamination neighborhood. We may also ask, how much ε needs
to be to make T (P ) attain the boundary of its range of potential values (often ±∞).

To simplify our study, we focus on a slightly simpler notion of contamination.

1The quantity dxe is defined as the smallest integer at least as large as x. Colloquially: ‘x rounded
up’.
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5 Robust statistics

Definition 5.2.1. For given ε > 0, we define the contamination neighborhood
of P ∈ P(X ) as

Pε(P,X ) = {P ′ = (1 − ε)P + εδx : x ∈ X }

where δx is the Dirac measure (point mass) at x.

The contaminated distributions P ′ in the above model are a mixture of the original
distribution P and a point mass at x. The mixture weights are given by (1 − ε) and
ε. In the motivating examples above, we can interpret this as replacing an ε-fraction
of the sample by outliers with value x. Compared to the general definition (5.1) of
contamination neighborhoods, we (i) only allow for mixtures of the original distribution
and point masses, and (ii) insist on all outliers to take the same value x. This simplifies
both interpretation and mathematical analysis while still capturing the essence of the
problem.

5.3 Measures of robustness

We shall discuss several measures of robustness that are commonly used in the literature.
They correspond to the three different questions we asked in the motivating section.

5.3.1 Influence function and error sensitivity

The influence function is a measure of how much the value of T (P ) changes when the
distribution P is replaced by an infinitesimally contaminated distribution P ′ ∈ Pε(P, x).

Definition 5.3.1. Let T : P(X ) → R be a functional. The influence function of
T at x ∈ X and P ∈ P(X ) is defined as

IFT (x, P ) = lim
ε→0

T ((1 − ε)P + εδx) − T (P )
ε

.

We used the term ‘influence function’ before and this is not a coincidence. Because
Fréchet differentiability implies Gateaux differentiability, the function IFT (x, P ) is
equal to EX∼δx [ρP (X)] = ρP (x) defined in Lemma 4.4.2. In the robustness context, the
interpretation is as follows. If the distribution P is replaced by a (slightly) contaminated
distribution P ′ = (1−ε)P+εδx, the value of the functional T changes by approximately
ε IFT (x, P ). The influence function measures the sensitivity of the functional T to an
infinitesimal contamination of P by a point mass at x.

The influence functions depends on the value of x of the contamination. Not all values
of x are necessarily problematic. For example, the sample mean isn’t very sensitive to
contaminations at x = E[X]. In fact, this contamination makes the estimate better!
When we speak about robustness, we always look for the worst-case contamination.
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5 Robust statistics

Definition 5.3.2. The gross error sensitivity of T at P is defined as

γT (P ) = sup
x∈X

| IFT (x, P )|.

The gross error sensitivity answers the question: how much can the value of T (P ) change
when P is replaced by the worst-case (infinitesimally) contaminated distribution P ′.
If the value is small, the functional T is robust. If the value is large, the functional is
not robust. Another interpretation is as follows. If ε � 1, the value of T (P ) changes
by approximately εγT (P ) in the worst-case. In the finite sample setting from the
motivating examples, we may choose ε = 1/n which corresponds to ‘replacing one of
the observations‘. The gross error sensitivity thus formalizes the answer to our first
question from the motivation.

Example 5.3.3 (Sample mean). Consider the sample mean T (P ) = EP [X] and the
influence function IFT (x, P ) = x− EP [X]. Hence, the gross error sensitivity is

γT (P ) = sup
x∈X

| IFT (x, P )| = ∞.

The sample mean is infinitely sensitive to outliers.

Example 5.3.4 (Cumulative probability). Consider the cumulative probability T (P ) =
Ep[1{X ≤ x}] = P(X ≤ x) = F (x). The influence function is IFT (x, P ) = 1{X ≤
x} − F (x), which yields

γT (P ) = sup
x∈X

| IFT (x, P )| ≤ 1.

As in the motivating example, this suggests that replacing an ε = 1/n fraction of the
sample by a worst-case outlier changes the estimate by at most 1/n.

The gross error sensitivity indeed seems to formalize our intuition from the motivating
examples and leads to the exactly same conclusions. The more abstract definition given
here has some benefits. First, we do not have to reason about a finite sample and
distinguish between different realizations of the sample. Second, we can apply the same
reasoning to more complex functionals T . Whenever we know the influence function,
we can compute the gross error sensitivity. In particular, in Example 4.3.4 we derived
the influence function of a Z-estimator as

ρP (x) = −E[∇ψθP
(X)]−1ψθP

(x),

which gives

γT (P ) = sup
x∈X

∣∣∣E[∇ψθP
(X)]−1ψθP

(x)
∣∣∣ .

This makes it easier to study different M - or Z-estimators of the same parameter θP .
For example, in the location model from Example 3.5.1 the sample mean and median
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5 Robust statistics

Figure 5.1: The Huber loss function (left) and its influence function (right) for P the
standard normal distribution; δ = 0 corresponds to the median, and δ = ∞
to the mean.

are estimators of the same parameter. Reasoning about the sample median from a
finite-sample perspective is somewhat awkward. In the abstract setting considered
here, this is quite easy.

Example 5.3.5 (Sample median). Consider the sample median θP = T (P ) = F−1(1/2)
which has influence function

IFT (x, P ) = 1{x ≤ θP } − 1/2
2fX(θP ) .

The gross error sensitivity is

γT (P ) = sup
x∈X

| IFT (x, P )| = 1
4fX(θP ) .

Compared the sample mean, the sample median is much more robust against outliers.
In particular, if fX(θP ) is large, many observations fall close to the median θP and
the sample median is very robust. The median is less robust if fX(θP ) is small. This
makes sense: there are few observations close to θP , so replacing the observations that
is closest to θP changes the median to the next closest observation, which may be far
away. Nevertheless, the median is always more robust than the sample mean whose
gross error sensitivity is infinite.

In the location model, the sample median trades some potential loss in efficiency
for robustness. This is a common theme in robust statistics. The mean and median
are in a way extremes of robustness. The mean is very efficient but not robust at all.
The median is very robust but not very efficient. Many estimators provide a trade-off
between these two extremes. One example is given in the following.

Example 5.3.6 (Huber loss). Consider again the location model from Example 3.5.1.
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An alternative estimator is the minimizer of the Huber loss:

θ̂ = arg min
θ

1
n

n∑
i=1

hδ(Xi − θ), where hδ(x) =

x2/2 if |x| ≤ δ,

δ|x| − δ2/2 if |x| > δ.

The Huber loss function is shown in the left panel of Fig. 5.1. It behaves like the square
loss (used for the sample mean) at small values of |x−θ| and like the absolute value loss
(used for the median) for large values. The parameter δ controls where the transition
happens. The Huber loss is a compromise between the two and is often used in robust
statistics. Let us compute the IF of the Huber loss. We have

h′
δ(x) = ψδ(x) =

x if |x| ≤ δ,

δ sign(x) if |x| > δ.
,

and

E[ψδ(X − θ)] = E[(X − θ0)1{|X − θ| ≤ δ}] + δE[sign(X − θ)1{|X − θ| > δ}].

If fX is symmetric around θ0, both terms are indeed zero if θ = θ0. For the influence
function, we need the derivative of this expression with respect to θ evaluated at θ0. It
holds

∂

∂θ0
E[X1{|X − θ0| ≤ δ}] = ∂

∂θ0

∫ θ0+δ

θ0−δ
xfX(x) dx

= (θ0 + δ)fX(θ0 + δ) − (θ0 − δ)fX(θ0 − δ)
= 2δfX(θ0 + δ),

where we used symmetry of fX around θ0, i.e., fX(θ0 + δ) = fX(θ0 − δ), in the last
step. Next,

∂

∂θ0
E[−θ01{|X − θ0| ≤ δ}] = − ∂

∂θ0
θ0[FX(θ0 + δ) − FX(θ0 − δ)]

= −[FX(θ0 + δ) − FX(θ0 − δ)],

using the product rule for derivatives and symmetry. Finally,

∂

∂θ0
E[δ sign(X − θ0)1{|X − θ0| > δ}] = δ

∂

∂θ0

∫ ∞

θ0+δ
fX(x) dx− δ

∂

∂θ0

∫ θ0−δ

−∞
fX(x) dx

= −δfX(θ0 + δ) − δfX(θ0 − δ)
= −2δfX(θ0 + δ).
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Taking everything together, the influence function of the Huber loss is given by

IFT (x, P ) = ψδ(x− θ0)
∂

∂θ0
E[ψδ(X − θ0)]

= (x− θ0)1{|x− θ0| ≤ δ} + δ sign(x− θ0)1{|x− θ0| > δ}
−[FX(θ0 + δ) − FX(θ0 − δ)] .

The influence function is shown in the right panel of Fig. 5.1. The influence function
approaches that of the mean as δ → ∞, since limδ→∞[FX(θ0 + δ) −FX(θ0 − δ)] = 1. It
approaches the IF of the median as δ → 0, since limδ→0[FX(θ0 + δ) − FX(θ0 − δ)]/δ =
2fX(θ0). The gross error sensitivity is

γT (P ) = sup
x∈X

| IFT (x, P )| = δ

FX(θ0 + δ) − FX(θ0 − δ) .

This approaches 1/2fX(θ0) for δ → 0 and ∞ for δ → ∞, again corresponding to the
error sensitivities of the mean and median, respectively. So the Huber loss indeed
interpolates between the two extreme cases of robustness and non-robustness.

Example 5.3.7 (Trimmed mean). Another robust estimator of location is the trimmed
mean. An α-trimmed mean can be defined as

θ̂ =
∑n

i=1Xi1{Xi ∈ [F−1
X (α/2), F−1

X (1 − α/2)]}∑n
i=1 1{Xi ∈ [F−1

X (α/2), F−1
X (1 − α/2)]}

,

which can be rewritten as an M -estimator

θ̂ = arg min
θ

1
n

n∑
i=1

mθ(Xi), with mθ(x) = (x− θ)21{x ∈ [F−1
X (α/2), F−1

X (1 − α/2)]},

or Z-estimator

1
n

n∑
i=1

ψθ(Xi − θ̂) = 0, with ψθ(x) = (x− θ)1{x ∈ [F−1
X (α/2), F−1

X (1 − α/2)]}.

The trimmed mean discards all observations smaller than the α/2-quantile and larger
than the (1 − α/2)-quantile. It then computes the mean of only the remaining
observations. In practice, the true quantiles are not known and replaced by sample
quantiles. Deriving the influence function and error sensitivity of the trimmed mean is
left as an exercise.

Example 5.3.8 (Winsorized mean). A related estimator is the Winsorized mean.
The Winsorized mean replaces all observations smaller than the α/2-quantile by the
α/2-quantile and all observations larger than the (1 − α/2)-quantile by the (1 − α/2)-
quantile. It then computes the mean of the modified sample. The Winsorized mean is
a compromise between the sample mean and the trimmed mean. It is more robust than
the sample mean but less robust than the trimmed mean.
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5.3.2 Maximum bias and breakdown point

The gross error sensitivity only considers relatively mild forms of contamination, because
ε is infinitesimally small. We now introduce two concepts that assess the robustness of
a functional T against more severe forms of contamination.

Definition 5.3.9. The maximum bias of T at P is defined as

bT (ε, P ) = sup
P ′∈Pε(P,X )

|T (P ′) − T (P )|.

The maximum bias measures how much the value of T (P ) can change when P is
replaced by the worst-case distribution in an ε-contamination neighborhood. Here, we
no longer require ε to be infinitesimally small. The maximum bias is often studied
under the general contamination model (5.1). We shall continue to use the simpler
model from Definition 5.2.1, however.

At ε = 1, we replace the actual distribution P entirely by another distribution that
may be completely different. Consider the boundary value

bT = lim
ε→1

bT (ε, P ).

Depending on the functional under study, this quantity may be finite or infinite. For
example, if T (P ) ∈ [0, 1] for all measures P , it holds bT ≤ 1. For the mean functional
T (P ) = EP [X], it holds bT = ∞. We consider a contaminated version T (P ′) of T (P )
to be ruined as soon as |T (P ) − T (P ′)| = bT . The breakdown point is the fraction of
the sample that can be contaminated before the estimate is ruined. This formalizes
the second question from our motivating examples.

Definition 5.3.10. The breakdown point of T at P is defined as

ε∗
T (P ) = sup{ε : bT (ε, P ) < bT }.

Example 5.3.11 (Sample mean). Consider the sample mean T (P ) = EP [X]. The
maximum bias is

bT (ε, P ) = sup
P ′∈Pε(P,X )

|EP ′ [X] − EP [X]| = ε sup
x∈X

|x− EP [X]| = ε∞.

The breakdown point is ε∗
T (P ) = 0, indicating that the most tiny contamination is

enough to ruin the estimate. This is in line with our previous findings from studying
the gross error sensitivity.

Example 5.3.12 (Sample median). Consider the sample median T (P ) = F−1
P (1/2).

Let P be absolutely continuous with strictly positive density everywhere on R. Let
P ′ = (1 − ε)P = εδx. As ε → 1 and x → ∞, we have T (P ′) → ∞, so the boundary
value is bT = ∞. To make the median functional attain this value, at least half of a
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sample has to be changed. More precisely, let x = ∞ and note that

1/2 = P ′{X ≤ F−1
P ′ (1/2)} = (1 − ε)P{X ≤ F−1

P ′ (1/2)} + ε1{x ≤ F−1
P ′ (1/2)}

= (1 − ε)FP (F−1
P ′ (1/2)).

Solving for F−1
P ′ (1/2) gives

F−1
P ′ (1/2) = F−1

P

( 1
2 − 2ε

)
.

This is finite if ε < 1/2 and infinite if ε ≥ 1/2. Hence, ε∗
T (P ) = 1/2.

5.3.3 Comments

The measures of robustness introduced above are only concerned with the population
level. There are finite-sample versions of the concepts. These are defined by simply
replacing the probability measure P by the (random) empirical measure Pn in the
definitions. Additionally, it is common to insist on ε being of the form j/n for some
j ∈ N. With the tools developed in this course, we may now show that the finite
sample versions converge to the population versions as n → ∞. Hence, the population
versions are often called asymptotic (as in: asymptotic breakdown point etc.) in the
literature.

5.4 Further examples of robust estimators

We have already seen a few examples of robust estimators of location. There are robust
estimators for basically any estimation target you can imagine. The two most common
other targets are scale and regression. We shall discuss robust estimators for these
targets in the following.

5.4.1 Robust regression

Consider the linear regression model Y = X>β+ε with E[ε | X] = 0. The least squares
estimator is the most common estimator for β in this model. It minimizes the empirical
risk with respect to the square loss L(y, x>β) = (y − x>β)2:

β̂OLS = arg min
β

1
n

n∑
i=1

(Yi −X>
i β)2.

The same principle is used also for nonlinear regression models Y = f(X) + ε with
E[ε | X] = 0. Now take F as a class of possibly nonlinear functions (like splines or
neural networks), and estimate the regression function f by

f̂LS = arg min
f∈F

1
n

n∑
i=1

(Yi − f(Xi))2.
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5 Robust statistics

The ideas of robust location estimation directly translate to this general setting. For
example, we can use the Huber loss from Example 5.3.6 and estimate the regression
function by

f̂δ = arg min
f∈F

1
n

n∑
i=1

hδ(Yi − f(Xi)).

A crucial question is how to choose the parameter δ. Intuitively, this parameter should
somehow relate to the average scale of the residuals Yi − f(Xi), which needs to be
estimated, again non-robustly.

5.4.2 Robust estimation of dispersion/scale

The most common estimator of dispersion or scale is the sample standard deviation
(SD):

σ̂ =

√√√√ 1
n

n∑
i=1

(Xi −Xn)2.

The sample standard deviation measures dispersion of the sample around an estimate
of location (here: the sample mean). You should already see that this estimator is not
robust. A robust version of this estimator is the median absolute deviation (MAD).
Let m̂ = med(X1, . . . , Xn) be the sample median. The MAD is defined as

σ̂ = med(|X1 − m̂|, . . . , |Xn − m̂|).

The double use of the median is necessary to make the estimator robust. Using sample
averages either to estimate location or spread around the estimated location would
break robustness. Another robust alternative is the interquartile range (IQR) defined
as the difference between the 75% and 25% quantiles of the sample.
The SD, MAD, and IQR all somehow quantify dispersion of the distribution, but

they do so in different ways. For X ∼ N (µ, σ), one can show that SD estimates σ,
MAD estimates 2φ(0)σ, and IQR estimates 2Φ−1(0.75)σ. It is common to standardize
MAD and IQR by 2φ(0) ≈ 0.8 and 2Φ−1(0.75) ≈ 1.35 to make them valid estimators
of σ, at least for the normal distribution. For other distributions, the standardization
factors would be different, and are often unknown. We simply have to live with the fact
that these estimators target different population quantitites. All of them are sensible
estimators of dispersion in the sense that they satisfy the following properties:

• shift invariance: Q(X1, . . . , Xn) = Q(X1 + c, . . . , Xn + c) for all c ∈ R,

• scale equivariance: Q(aX1, . . . , aXn) = |a|Q(X1, . . . , Xn) for all a ∈ R \ {0}.

Any statistic satisfying these properties is called dispersion estimate.
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6 U-statistics

U-statistics are a generalization of sample means and are used to estimate population
quantities of the form E[h(X1, . . . , Xm)], involving multiple iid copies X1, . . . , Xm ∼ P .
To estimate such quantities, U-statistics average over all m-tuples of the data. The ’U’
in U-statistics stands for unbiased. The concept (and terminology) was introduced 1948
by Wassily Hoeffding and became a hot research topic in nonparametric statistics in
the late 1980s and early 1990s. U-statistics have many interesting examples, including
the (unbiased) sample variance, Kendall’s dependence measure, the Wilcoxon signed
rank statistic, and the Cramér-von Mises statistic. We shall see that, while U -statistics
average over dependent random variables, they admit a law of large numbers and
central limit theorem.

6.1 Definitions

Let X1, . . . , Xm be iid copies of a random variable X with distribution P . Suppose
we are interested in estimating a parameter θ = E[h(X1, . . . , Xm)], where h : X m → R

is some measurable function, called kernel. Given a data set X1, . . . , Xn, a natural
estimator for θ is the average over all m-tuples of the data.

Definition 6.1.1. A quantity of the form

Un = 1(n
m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim)

is called an m-th order U-statistic with kernel h.

U-statistics are natural generalizations of sample means, which are U-statistics of order
m = 1. The statistic Un is indeed unbiased for θ:

E[Un] = 1(n
m

) ∑
1≤i1<···<im≤n

E[h(Xi1 , . . . , Xim)] = E[h(X1, . . . , Xm)] = θ.

Observe that the statistic Un averages over allm-tuples of the data, but keeps the indices
in increasing order. This only makes sense if the kernel function h is symmetric in its
arguments. Otherwise, averaging over unordered m-tuples would increase efficiency.
Any non-symmetric kernel h̃ can be symmetrized by defining

h(x1, . . . , xm) = 1
m!

∑
π∈Π(1,...,m)

h̃(Xπ(1), . . . , Xπ(m)),
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6 U-statistics

where Π(1, . . . ,m) is a set of all permutations of (1, . . . ,m). For example, for m = 2,
this simply reads

h(x1, x2) = 1
2 h̃(x1, x2) + 1

2 h̃(x2, x1).

This is indeed without loss of generality since E[h(X1, . . . , Xm)] = E[h̃(X1, . . . , Xm)]
and

1
n(n− 1) · · · (n−m)

∑
1≤i1,...,im≤n

h̃(Xi1 , . . . , Xim) = Un.

For convenience, we shall always assume that the kernel h is symmetric.

Example 6.1.2 (Sample variance). The (unbiased) sample variance is a second-order
U -statistic with kernel h(x1, x2) = 1

2(x1 − x2)2:

1
n− 1

n∑
i=1

(Xi −Xn)2 = 1
n(n− 1)

∑
1≤i<j≤n

(Xi −Xj)2 = 1(n
2
) ∑

1≤i<j≤n

1
2(Xi −Xj)2.

It is indeed an unbiased estimator for the parameter

θ = Var[X1] = E[X2
1 ] − E[X1]2 = 1

2E[(X1 −X2)2].

U-statistics are closely related to V-statistics, which are defined as

Vn = 1
nm

∑
1≤i1,...,im≤n

h(Xi1 , . . . , Xim).

The main difference is that V-statistics also average over terms where the same
observation Xij appears multiple times in the kernel.1 This usually leads to biased
estimates E[Vn] 6= θ. To see this, consider the simple kernel h(x1, x2) = x1x2 and
assumeX1, . . . , Xn

iid∼ N (0, 1). Then E[h(X1, X2)] = E[X1X2] = 0, but E[h(X1, X1)] =
E[X2

1 ] = 1. The ‘V’ in the name relates to ‘variance’, since the biased version of the
sample variance n−1∑n

i=1(Xi −Xn)2 can be written as

Vn = 1
n2

∑
1≤i,j≤n

1
2(Xi −Xj)2.

In most cases, V-statistics are asymptotically equivalent to U-statistics.

Lemma 6.1.3. If E[|h(Xi1 , . . . , Xim)|] < ∞ for all 1 ≤ i1, . . . , im ≤ n, it holds

Vn = Un +Op

( 1
n

)
.

1The extra terms are sometimes called ‘diagonal’ of the V-statistic.
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6 U-statistics

Proof. For clarity, we give the proof only for m = 2. Observe

Vn = 1
n2

∑
1≤i,j≤n

h(Xi, Xj)

= 1
n2

∑
i 6=j

h(Xi, Xj) + 1
n2

∑
i=j

h(Xi, Xj)

= 1
n2

∑
i 6=j

h(Xi, Xj) + 1
n2

n∑
i=1

h(Xi, Xi)

= 1
n2

∑
i 6=j

h(Xi, Xj) +Op

( 1
n

)
,

since h(Xi, Xi) = Op(1) by Markov’s inequality. Further, observe

1
n2 = 1

n(n− 1)
(n− 1)
n

= 1
n(n− 1)

(
1 + 1

n

)
= 1
n(n− 1) +O

( 1
n3

)
.

Since there only O(n2) pairs with i 6= j, and h(Xi, Xj) = Op(1), it then follows

1
n2

∑
i 6=j

h(Xi, Xj) = 1
n(n− 1)

∑
i 6=j

h(Xi, Xj) +Op

(
n2

n3

)
= Un +Op

( 1
n

)
.

The lemma implies that if
√
n(Un − θ) 6→p 0, then Vn and Un are asymptotically

equivalent. We’ll see that this is usually the case, but not always.

6.2 Examples

Let’s see some further examples.

Example 6.2.1 (Wilcoxon’s signed rank statistic). The Wilcoxon test is a nonparametric
test for centrality of a distribution. It does so by estimating the probability P(X1 +X2 >

0), where X1, X2 ∼ P are iid copies of a random variable X. If P(X1 +X2 > 0) 6= 1/2,
then the distribution P is not centered around 0. The Wilcoxon statistic is a second-order
U -statistic with kernel h(x1, x2) = 1{x1+x2>0} estimating this probability:

Un = 1(n
2
) ∑

1≤i<j≤n

1{Xi+Xj>0}.

Example 6.2.2 (Kendall’s τ). Kendall’s τ is a measure of dependence between two
random variables (X,Y ) ∼ P that fixes some deficiencies of the Pearson correlation.
In particular, it is an adequate measure for non-linear (but monotonic) relationships.
Kendall’s τ is defined as the difference between the probabiliy of concordance and
discordance of two pairs of observations:

τ = P{(X1 −X2)(Y1 − Y2) > 0} − P{(X1 −X2)(Y1 − Y2) < 0}.
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6 U-statistics

The first term is the probability of concordance, i.e., the probability of ’X and Y

are large/small at the same time’. The second term is the probability of discordance,
i.e., the probability of ’X is large and Y is small’ or vice versa. The probabilities
quantify this by comparing two pairs of observations (X1, Y1) and (X2, Y2). The event
(X1 −X2)(Y1 − Y2) > 0 means that X1 and Y1 are both larger than X2 and Y2 or both
smaller (concordance). The event (X1 − X2)(Y1 − Y2) > 0 means that only one of
X1 and Y1 is larger than X2 and Y2 (discordance). It holds τ ∈ [−1, 1], τ = 0 if X
and Y are independent, τ = 1 if X = f(Y ) for a strictly increasing function f , and
τ = −1 if X = f(Y ) for a strictly decreasing function f . Assuming that P is absolutely
continuous, Kendall’s τ can be rewritten as

τ = 2P{(X1 −X2)(Y1 − Y2) > 0} − 1.

This is naturally estimated by a second-order U -statistic with kernel h((x1, y1), (x2, y2)) =
1{(x1−x2)(y1−y2)>0}:

τ̂ = 2(n
2
) ∑

1≤i<j≤n

1{(Xi−Xj)(Yi−Yj)>0} − 1.

Example 6.2.3 (Cramér-von Mises statistic). The Cramér-von Mises statistic is
used to measure the goodness-of-fit test of a reference distribution F ∗ to a sample
X1, . . . , Xn ∼ F . The population quantity of interest is the expected squared difference
between the two distribution functions F∗ and F :

θ = E[(F ∗(X) − F (X))2] =
∫

(F ∗(x) − F (x))2dF (x).

The true distribution F is of course unknown, but the quantity above can be estimated
It is defined as the integral of the squared difference between the empirical distribution
function Fn and the true distribution function F :

CvM =
∫

(F̂n(x) − F (x))2dF (x).

Expanding the square and rearranging, we have

CvM = 1
n2

n∑
i=1

n∑
j=1

∫
(1Xi≤x − F ∗(x))(1Xj≤x − F ∗(x))dF ∗(x),

a second-order V -statistic. This one, we shall see, is not asymptotically equivalent to
the corresponding U -statistic.

Another way that U-statistics arise naturally is when estimating a parameter from
nonparametric pseudo-samples. The general setup is as follows: We want to estimate a

85



6 U-statistics

parameter α from a sample X1, . . . , Xn through an estimating equation

1
n

n∑
i=1

ψα(g(Xi)) = 0,

where ψα is a known identifying function, but the function g is not known. Instead,
we estimate g by a nonparametric estimator ĝ from the sample, and then solve the
estimating equation

1
n

n∑
i=1

ψα̂(ĝ(Xi)) = 0.

Now assume that ψα is sufficiently differentiable and ĝ is asymptotically linear in the
sense

sup
x

∣∣∣∣∣ĝ(x) − g(x) − 1
n

n∑
i=1

γ(x,Xi)
∣∣∣∣∣ = op(1/

√
n),

for some function γ. Then α̂ solves

1
n

n∑
i=1

ψα̂(g(Xi)) + 1
n2

n∑
i=1

n∑
j=1

ψ′
α̂
(g(Xi))γ(Xi, Xj) + op(1/

√
n) = 0,

and we now have to deal with a V-statistic to analyze the asymptotic properties of α̂.

6.3 Consistency

U-statistics are consistent estimators for θ = E[h(X1, . . . , Xm)] under mild conditions.

Theorem 6.3.1. If E[|h(X1, . . . , Xm)|2] < ∞, the U -statistic Un is a consistent
estimator for θ = E[h(X1, . . . , Xm)]:

Un
p→ θ.

Proof. We already know that E[Un] = θ. To show convergence in probability, we use
Chebyshev’s inequality:

P(|Un − θ| > ε) ≤ Var[Un]
ε2 .

It thus remains to show that Var[Un] → 0. We have

Var[Un] = 1(n
m

)2 ∑
1≤i1<···<im≤n

∑
1≤j1<···<jm≤n

Cov[h(Xi1 , . . . , Xim), h(Xj1 , . . . , Xjm)].

Define

ξk = Cov[h(Xi1 , . . . , Xim), h(Xj1 , . . . , Xjm)], for |{i1, . . . , im} ∩ {j1, . . . , jm}| = k.
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By symmetry of the kernel, this covariance only depends on the number of overlapping
indices, but not on the specific indices. Since X1, . . . , Xm are independent, ξ0 = 0.
To count how many terms we have with |{i1, . . . , im} ∩ {j1, . . . , jm}| = k, do the
following: 1) choose i1 < · · · < im arbitrarily (there are

(n
m

)
ways to do this); 2) choose

k overlapping indices from {i1, . . . , im} (there are
(m

k

)
ways to do this); 3) choose the

remaining m− k indices from the remaining n−m indices (there are
(n−m

m−k

)
ways to

do this). In total we have

Var[Un] = 1(n
m

)2 m∑
k=1

(
n

m

)(
m

k

)(
n−m

m− k

)
ξk =

m∑
k=1

O

( 1
nk

)
ξk = O

( 1
n

)
.

From the proof, we actually learn a little more. Markov’s inequality gives

Un − θ = Op

(
Var[Un]1/2

)
= Op(1/

√
n),

so we recover the ’usual’ rate of convergence. This suggests that we may hope to find
a non-trivial limiting distribution for the quantity

√
n(Un − θ).

6.4 Normality via Hoeffding’s decomposition

To see that the limit should be normal, we first give a direct proof for the case m = 2.
Define h1(x) = E[h(x,Xj)] and consider the following decomposition

Un − θ = 1
n(n− 1)

∑
1≤i 6=j≤n

h(Xi, Xj) − θ

= 2
n

n∑
i=1

[h1(Xi) − θ]︸ ︷︷ ︸
:=An

+ 1
n(n− 1)

∑
1≤i 6=j≤n

(h(Xi, Xj) − h1(Xi) − h1(Xj) + θ)

︸ ︷︷ ︸
=:Bn

.

This is called Hoeffding decomposition of the U-statistic. Observe that

E[h1(Xi)] = E[h(Xi, Xj)] = θ,

so both terms in the decomposition have mean zero. The first term is a sample mean
and converges to a normal limit by the CLT:

√
nAn

d→ N (0, 4Var[h1(X1)]).

The term Bn is also a U-statistic, but asymptotically negligible. To see this, define

η(Xi, Xj) = h(Xi, Xj) − h1(Xi) − h1(Xj) + θ,

and observe

Var [Bn] = 1
n2(n− 1)2

∑
1≤i1 6=i2≤n

∑
1≤j1 6=j2≤n

E[η(Xi1 , Xi2)η(Xj1 , Xj2)].
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Since

E[η(Xi, Xj) | Xi] = E[η(Xi, Xj) | Xj ] = 0,

all terms with {i1, i2} 6= {j1, j2} are in fact zero. For example, if i1 = j1, but i2 6= j2,
we have

E[η(Xi1 , Xi2)η(Xj1 , Xj2)] = E [E[η(Xi1 , Xi2)η(Xj1 , Xj2) | Xj1 , Xj2 ]]
= E [E[η(Xi1 , Xi2) | Xj1 , Xj1 ] η(Xj1 , Xj2)]
= E [E[η(Xi1 , Xi2) | Xi1 ] η(Xj1 , Xj2)]
= 0.

Since there are only O(n2) terms with {i1, i2} = {j1, j2}, we have Var[Bn] = O(1/n2),
so

√
nBn →p 0.

We have shown the following result.

Proposition 6.4.1. Let m = 2 and ξ1 = Var[h1(X1)] ∈ (0,∞) and E[h(X1, X2)2] <
∞. Then

√
n(Un − θ) d→ N (0, 4ξ1).

The argument can be generalized to higher order U-statistics, but the notation and
computations become tedious. We will see a more elegant approach in the next section.

6.5 Normality via Hájek’s projection principle*

Normality of complicated statistics like higher-order U-statistics can be established by
a general approach called Hájek’s projection principle. The idea is somewhat abstract
but extremely elegant.

Random variables can be seen as elements of the vector space

L2 = {X : E[X2] < ∞} =
{
X : Ω → R, s.t.

∫
X2(ω)dP (ω) < ∞

}
of square-integrable random variables equipped with the inner product 〈X,Y 〉 = E[XY ].
Let S be a linear subspace of L2, meaning that aX + bY ∈ S for all X,Y ∈ S and
a, b ∈ R. We can now define the projection of an arbitrary random variable T onto S
by the random variable ΠST that minimizes the distance in L2:

E[(T − ΠST )2] = min
S∈S

E[(T − S)2].

A standard result for Hilbert spaces says that Ŝ is a projection if and only if the
following orthogonality condition holds:

E[(T − Ŝ)S] = 0 for all S ∈ S.
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This view is now exploited as follows. Let Tn be some statistic with complicated
form (like a U-statistic). We project this estimator onto a subspace of random variables
that are easier to analyze. The hope is then that the projection is so close to the
original estimator that the difference between Tn and its projection Ŝn is asymptotically
negligible.

Lemma 6.5.1. Let Sn ⊆ L2 be linear spaces of random variables containing the
constants. Then if Var[Tn]/Var[ΠSnTn] → 1, it holds

Tn − E[Tn]√
Var[Tn]

− ΠSnTn − E[ΠSnTn]√
Var[ΠSnTn]

= op(1).

Proof. We will show that the variance of the term in question goes to zero. Write
Ŝn = ΠSnTn. Since Sn contains constants, the orthogonality condition

E[(Tn − Ŝn)S] = 0 for all S ∈ Sn,

implies E[Tn] = E[Ŝn]. Since both Tn and Ŝn are centered in the expression in question,
we can assume without loss of generality that E[Tn] = E[Ŝn] = 0. We have

Var

 Tn√
Var[Tn]

− Ŝn√
Var[Ŝn]

 = 2 − 2 Cov[Tn, Ŝn]√
Var[Tn]

√
Var[Ŝn]

.

and

Cov[Tn, Ŝn] = E[TnŜn] = E[(Tn − Ŝn)Ŝn] + E[Ŝ2
n] = 0 + E[Ŝ2

n] = Var[Ŝn].

Thus, using the assumption Var[Tn]/Var[ΠSnTn] → 1, we get

2 − 2 Cov[Tn, Ŝn]√
Var[Tn]

√
Var[ΠSnTn]

→ 0.

So which linear space of random variables is suitable to establish normality? A
natural choice is a space of sample averages. Let

Sn =
{

1
n

n∑
i=1

g(Xi) : g(Xi) ∈ L2
}
. (6.1)

We have the following result.

Lemma 6.5.2. The projection of a random variable T ∈ L2 with E[T ] = 0 onto the
space Sn defined in (6.1) is

Ŝn =
n∑

i=1
E[T | Xi].

Proof. The term on the right is an element of Sn with the choice g(Xi) = nE[T | Xi].
To show that it is a projection, we can verify the orthogonality condition. For an
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arbitrary element

Sn = 1
n

n∑
i=1

g(Xi) ∈ Sn,

it holds

E[(T − Ŝn)Sn] = 1
n

n∑
i=1
E[(T − Ŝn)g(Xi)].

Further

E[(T − Ŝn)g(Xi)] = E
[
E[(T − Ŝn)g(Xi) | Xi]

]
= E

[
E[(T − Ŝn) | Xi] g(Xi)

]
and

E[(T − Ŝn) | Xi] = E[T | Xi] −
n∑

j=1
E[E[T | Xj ] | Xi] = 0,

because E[E[T | Xj ] | Xi] = E[T ] = 0 for i 6= j and E[E[T | Xj ] | Xi] = E[T | Xi] for
i = j. We have shown

E[(T − Ŝn)Sn] = 0, for all Sn ∈ Sn,

so Ŝn is indeed a projection.

We now apply Hájek’s projection principle to a general m-th order U-statistic Un.

Lemma 6.5.3. Let Un be an m-th order U-statistic with symmetric kernel h,
E[h(Xi1 , . . . , Xim)2] < ∞, and Sn be the space defined in (6.1). Define

h1(x) = E[h(x,X2, . . . , Xm)].

Then the projection of Un onto Sn defined in (6.1) is

Ŝn = m

n

n∑
i=1

h1(Xi).

Proof. We have

E[Un − θ | Xi] = 1(n
m

) ∑
1≤i1<···<im≤n

E[h(Xi1 , . . . , Xim) | Xi] − θ

It holds E[h(Xi1 , . . . , Xim) | Xi] = θ if i /∈ {i1, . . . , im}. This happens for
(n−1

m

)
terms.

For the remaining (
n

m

)
−
(
n− 1
m

)
=
(
n− 1
m− 1

)
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terms, E[h(Xi1 , . . . , Xim) | Xi] = h1(Xi). This gives

E[Un − θ | Xi] =
(n−1

m−1
)(n

m

) h1(Xi) = m

n
h1(Xi),

so the projection of Un onto Sn is

Ŝn =
n∑

i=1
E[Un | Xi] = m

n

n∑
i=1

h1(Xi).

To obtain a general normality result for U-statistics, it only remains to put things
together.

Theorem 6.5.4. Let Un be an m-th order U-statistic with symmetric kernel h and
define

h1(x) = E[h(x,X2, . . . , Xm)].

If E[h(X1, . . . , Xm)2] < ∞ and ξ1 = Var[h1(X1)] ∈ (0,∞), it holds

√
n(Un − θ) d→ N (0,m2ξ1).

Proof. We apply Lemma 6.5.1 with Tn = Un and Sn as defined in (6.1). By Lemma 6.5.3,
the projection of Un onto Sn is given by

Ŝn =
n∑

i=1
E[Un | Xi] = m

n

n∑
i=1

h1(Xi).

By the CLT and Slutsky’s lemma, we have

Ŝn − E[Ŝn]√
Var[Ŝn]

→d N (0, 1),

where Var[Ŝn] = m2

n ξ1. Furthermore,

Var[Un] = m2

n
ξ1 + o

( 1
n

)
,

by the computations in the proof of Theorem 6.3.1, so Var[Un]/Var[Ŝn] → 1. Now the
claim follows from Lemma 6.5.1.

6.6 Further topics

We briefly discuss to a few more advanced topics in the theory of U-statistics. More
details can be found in, e.g., Van der Vaart (2000, Chapter 12)
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6.6.1 Degenerate U-statistics and non-normal limits

Normality of U-statistics is not always guaranteed. In our result, we made the seemingly
innocuous assumption ξ1 = Var[h1(X1)] > 0. We have actually already encountered an
example of a U-statistic where this is not the case, Bn in Section 6.4. Another example
is the Crámer-von Mises statistic from Example 6.2.3, which is a V-statistic with kernel

h(x1, x2) = E[(1{x1≤X} − F ∗(X))(1{x2≤X} − F ∗(X))].

Under H0 : F = F ∗, it holds

E[h(x1, X2)] = E[(1{x1≤X} − F ∗(X))(1{X2≤X} − F ∗(X))]

= E
[
E[(1{x1≤X} − F ∗(X))(1{X2≤X} − F ∗(X)) | X1]

]
= E

[
(1{x1≤X} − F ∗(X))E[1{X2≤X} − F ∗(X) | X1]

]
= E

[
(1{x1≤X} − F ∗(X)) × 0

]
= 0.

U-statistics with h1(X1) = E[h(X1, . . . , Xm) | X1] = 0 almost surely are called
degenerate. For degenerate U-statistics, the first-order term vanishes and our CLT
argument no longer works. Instead, the asymptotic behavior is determined by higher-
order terms, which can no longer be represented by a sample average. Additionally,
the limiting behavior of V- and U-statistics is no longer the same, since their difference
is of the same order as the (now dominant) second-order term in the U-statistic.
Dealing with degenerate U-statistics is messy, and the limiting distributions are

complicated. These distributions are called Gaussian chaos and often resemble a
(potentially infinite) weighted sum of χ2 random variables. To determine the weights,
one has to find the eigenvalues and -functions of an operator derived from the kernel h.

6.6.2 Multi-sample U-statistics

Another extension of U-statistics relates to multi-sample problems. Let’s consider
the two-sample case briefly. We have two independentamples X1, . . . , Xn

iid∼ P and
Y1, . . . , Ym

iid∼ Q and want to estimate the parameter θ = E[h(Xi1 , . . . , Xir , Yj1 , . . . , Yjs)]
for some kernel h. A natural estimator is the two-sample U-statistic of order (r, s):

Un = 1(n
r

)(m
s

) ∑
1≤i1<···<ir≤n

∑
1≤j1<···<js≤m

h(Xi1 , . . . , Xir , Yj1 , . . . , Yjs). (6.2)

Example 6.6.1. An example for a two-sample U-statistic is the Mann-Whitney statistic,
which is used to test for equality of distributions. The parameter of interest is

θ = P(X ≤ Y ) = E[1{X≤Y }],

where X ∼ P and Y ∼ Q are independent. If P = Q, then θ = 1/2. A deviation from
1/2 indicates a difference in the distributions: if θ > 1/2, X is stochastically smaller
than Y , and if θ < 1/2, X is stochastically larger than Y . The parameter θ can be
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6 U-statistics

estimated a two-sample U-statistic of order (1, 1) with kernel h(x, y) = 1{x≤y}:

Un = 1
nm

n∑
i=1

m∑
j=1

1{Xi≤Yj}.

To analyze the behavior of such a statistic, we can use similar arguments as for one-
sample statistics. Assume both m and n tend to ∞ such that n/(n+m) → λ ∈ (0,∞).
Projecting Un onto the space of random variables of the form

1
n

n∑
i=1

g1(Xi) + 1
m

m∑
j=1

g2(Yj),

gives

Un ≈ r

n

n∑
i=1

h1,1(Xi) + s

m

m∑
j=1

h1,2(Yj),

where

h1,1(x) = E[h(x,X2, . . . , Xr, Y1, . . . , Ys)], h1,2(y) = E[h(X1, . . . , Xr, y, Y2, . . . , Ys)].

Now the central limit theorem gives

√
n+m(Un − θ) d→ N (0, r2ξ1,1/λ+ s2ξ1,2/(1 − λ)),

where

ξ1,1 = Var[h1,1(X1)], ξ1,2 = Var[h1,2(Y1)].

6.6.3 U-processes

Just as sample averages can be extended to empirical processes, U-statistics can be
extended to U-processesUn(h) = 1(n

m

) ∑
1≤i1<···<im≤n

h(Xi1 , . . . , Xim) − E[h(X1, . . . , Xm)] : h ∈ H

 ,
where H is a class of symmetric kernel functions. Using Hoeffding’s decomposition and
bracketing/covering arguments, one can show that U-processes are often asymptotically
equivalent to the corresponding empirical process{

m

n

n∑
i=1

h1(Xi) − E[h1(Xi)] : h∈H1

}
,

where

H1 = {h1(x) = E[h(x,X2, . . . , Xm)] : h ∈ H}.
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7 Dependent data

Our results so far rely heavily on the assumption that data are independent. This
assumption is so common in statistics that we sometimes forget to question it. In
many domains, however, dependent data are the norm, not the exception. The most
common situation is that data are recorded over time, leading to time series. Another
common example is spatial data, where observations are taken at different locations.
For example, today’s air temperature is correlated with yesterday’s temperature, and
the temperature in Munich is correlated with the temperature in Augsburg.

If the dependence is not too strong, we can still obtain meaningful results, but some
care is in order. We will formalize this focusing on the most basic results underlying
our theory: the law of large numbers and the central limit theorem. Everything else
we built on top can be generalized as well, but we will not go into the details here.

To simplify the exposition, we focus our discussion on time series data: a sequence
of random variables (Xt)t∈N, where Xt is the observation at time t. For spatial data
or other general forms of dependent data, we would need tuples of indices, which only
complicates the notation. The concepts should be clear, though, and can be extended
to other types of dependent data.

7.1 Some preliminary considerations

It is instructive to see how statistical inference can fail when data are dependent. We
consider the situation where X1, . . . , Xn ∼ P have the same distribution (we call this
stationary) but are dependent and ask how the sample average

Xn = 1
n

n∑
i=1

Xi

behaves.

Perfect dependence First assume the extreme case of perfect dependence, where
X1 = · · · = Xn with probability 1. Clearly, Xn = X1 with probability 1. Specifically,
Xn converges in probability to a random variable that is equal to X1. Contrast this to
the iid case where Xn converges in probability to the deterministic value E[X1]. Making
inference about E[X1] under this strong form of dependence is virtually impossible,
just as it would be if we only had a single observation X1.
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7 Dependent data

Exchangeable dependence Next, let’s consider a weaker form of dependence. Assume
that

(X1, . . . , Xn) ∼ N (0,Σ), Σij =

1, i = j

ρ ∈ (0, 1), i 6= j.

By the properties of the multivariate normal, we know that

Xn = 1
n

(X1, . . . , Xn)1 ∼ N
(

0, 1>Σ1
n2

)
,

where 1 = (1, . . . , 1)>. Further

1>Σ1
n2 = 1

n2

n∑
i=1

n∑
j=1

Σij = 1
n

+ n(n− 1)
n2 ρ

n→∞−→ ρ.

It follows that Xn →d N (0, ρ). The limit of Xn is still random. But the smaller ρ
(= the weaker the dependence), the more information Xn reveals about E[X1]. The
normality assumption for the data isn’t even necessary for this conclusion. If we just
assume that E[Xi] = 0 and Cov(Xi, Xj) = 1(i = j) + ρ1(i 6= j), we have

E[Xn] = 0, Var[Xn] = 1>Σ1
n2 → ρ.

However, we have no idea about the shape of the distribution of Xn since the central
limit theorem does not apply.

m-dependence The last example should give us some indication that dependence is
not a complete dealbreaker. As long as the covariance is such that 1>Σ1/n2 → 0, a
law of large numbers would hold! For example, consider the structure

Σij =


1, i = j

ρ ∈ (0, 1), |i− j| = 1
0, |i− j| > 1,

in which two subsequent observations are dependent, but observations at least two
time steps apart are uncorrelated. Such a covariance structure could be generated, e.g.,
from the moving average model

Xt = εt + ρεt−1,

where εt is a sequence of iid innovations with variance 1/(1 + ρ2). It holds

1>Σ1
n2 = 1

n
+ ρ

n
→ 0,
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7 Dependent data

so Xn →p E[X1]; a law of large numbers. Furthermore, assuming (X1, . . . , Xn) ∼
N (0,Σ), we have the central limit theorem

√
nXn ∼ N (0, 1 + ρ).

We see that positive dependence (ρ > 0) can lead to a larger variance of the sample
mean than in the iid case, but negative dependence (ρ < 0) can lead to a smaller
variance. The above is a special case of what is called m-dependence with m = 1. In
general, a sequence X1, X2, . . . of random variables is called m-dependent if (Xs)s≤t

and (Xs)s>t+m are independent for all t ∈ N. This is a simple form of asymptotic
independence: the future is independent of the past provided there are m observations
in between.

Markovian/autoregressive dependence Another common type of weak depedence
arises from Markovian models. For example, take the autoregressive model of order 1:

Xt = ρXt−1 + εt, εt
iid∼ N (0, 1 − ρ2).

This is a special case of Markovian dependence, which asserts that P(Xt | Xt−1, Xt−2, . . . ) =
P(Xt | Xt−1). This is equivalent to independence of Xt and (Xt−k)k>2 conditional on
Xt−1. One can show that for all t,

E[Xt] = 0, Cov(Xt, Xt−h) =

1, h = 0
ρ|h|, h 6= 0.

Then,

Var[Xn] = 1>Σ1
n2 = 1

n2

n∑
i=1

n∑
j=1

ρ|i−j| = 1
n2

n∑
i=1

n−i∑
h=1−i

ρ|h|.

Since by the geometric series formula,

n−i∑
h=i−n

ρ|h| →
∞∑

h=−∞
ρ|h| = 1 + 2

∞∑
h=1

ρh = 1 + 2ρ
1 − ρ

= 1 + ρ

1 − ρ
,

we get

Var[Xn] ≈ 1
n

1 + ρ

1 − ρ
→ 0,

so the law of large numbers Xn →p 0 holds. Further, we have the central limit theorm

√
nXn ∼ N

(
0, 1 + ρ

1 − ρ

)
.

Again, the variance of the sample mean can be larger or smaller than in the iid case,
depending on the sign of ρ.
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Conclusion The above examples show that the law of large numbers and the central
limit theorem can hold for dependent data. The key is that the dependence is not
too strong. More specifically, the examples that we’ve seen exhibit a form of mixing
behavior, where the dependence between observations decays as the distance between
them increases. This is a common property of many time series models, and it is what
will allow us to extend our results to dependent data. We also saw that laws of large
numbers generalizes quite easily, since only the covariance structure of the data matters.
Another important observation is that the asymptotic variance is generally different
from the independent case, so blindly applying inference tools from the independent
world will lead to incorrect inferences. Central limit theorems we could only obtain
under the assumption that the data are normal in the first place. We will see that
this assumption is not necessary, but requires more sophisticated assumptions on the
dependence.

7.2 Law of large numbers

Let’s now make our preliminary considerations more formal. To simplify the discussion
a bit, we shall make the following assumption.

Definition 7.2.1. A sequence of random variables (Xt)t∈N is called stationary if

(Xt1 , . . . , Xtk
) d= (Xt1+h, . . . , Xtk+h) for all t1, . . . , tk, h ∈ N.

Stationarity is a common assumption in time series analysis. It says that the distribution
of the data does not change over time. In particular E[Xt] and Cov(Xt, Xt+h) do not
depend on t or the sign of h. It can be relaxed in essentially everything that follows,
but we will not bother with this here. For simplicity we also set Xt = 0 for all t ≤ 0.

Generalizing the law of large numbers is straightforward.

Theorem 7.2.2. Let (Xt)t∈N be a stationary sequence of random variables such∑∞
h=−∞ |Cov(Xt, Xt+h)| < ∞. Then, Xn →p E[X1].

Proof. The proof is essentially the same as for the iid case. We have E[Xn] = µ and

Var[Xn] = 1
n2

n∑
i=1

n∑
j=1

Cov(Xi, Xj) = 1
n2

n∑
t=1

n∑
j=1

Cov(Xt, Xj)

= 1
n2

n∑
t=1

n−t∑
h=1−t

Cov(Xt, Xt+h)

≤ 1
n

∞∑
h=−∞

|Cov(Xt, Xt+h)| → 0.

Now the result follows form Markov’s inequality.

The main assumption is that the dependence between observations is not too strong.
Specifically, we assume that the covariances Cov(Xt, Xt+h) are absolutely summable.
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If Cov(Xt, Xt+h) = σ2ρ(h), the summability condition becomes σ2∑∞
h=0 ρ(h) < ∞,

which is equivalent to the existence of a second moment and some form of asymptotic
uncorrelatedness. In particular, the condition is satisfied for ρ(h) ∼ h−α for some α > 1,
but violated for ρ(h) ∼ h−α with α ≤ 1. The summability condition thus requires the
correlations to decay fast enough.

7.3 Mixing conditions

We have seen that a certain level of asymptotic uncorrelatedness is enough to establish a
LLN, because its proof merely relies on the summability of covariances. The central limit
theorem, however, requires more. The standard proof of the CLT (which I now added
in Section 2.8) relies more heavily on independence (as opposed to uncorrelatedness)
of observations. To establish a CLT for dependent data, we thus need to strengthen
our asymptotic uncorrelatedness condition to a form of asymptotic independence. This
is commonly expressed through mixing conditions involving mixing coefficients that
measure the strength of dependence as deviations from independence.1
There are several coefficients that can be used to measure mixing. To simplify the

notation a bit, we write X≤t = (Xs)s≤t and X≥t = (Xs)s≥t for the past and future of
Xt, respectively. Here are some common mixing coefficients:

• α-mixing or strong mixing coefficient:

α(h) = sup
A,B

|P(X≥t+h ∈ A,X≤t ∈ B) − P(X≥t+h ∈ A)P(X≤t ∈ B)|,

• φ-mixing or uniform mixing coefficient:

φ(h) = sup
A,B

|P(X≥t+h ∈ A | X≤t ∈ B) − P(X≥t+h ∈ A)|,

• β-mixing or absolute regularity coefficient:

β(h) = sup
A
EX≤t

[|P(X≥t+h ∈ A | X≤t) − P(X≥t+h ∈ A)|] ,

The suprema are taken over all sets where the corresponding probabilities are well-
defined. Each coefficient measures deviation from independence in its own way. Indeed,
we have α(h) = φ(h) = β(h) = 0 whenever the future X≥t+h is independent of the past
X≤t for all t, and they are non-zero when the past carries some information about the
future. We call a process Xt α/φ/β-mixing if α(h)/φ(h)/β(h) → 0 as h → ∞.

Although not immediately obvious, we have the following relation

2α(h) ≤ β(h) ≤ φ(h), (7.1)

so that α-mixing imposes the weakest condition on dependence (i.e., it allows for stronger
dependence). In fact, φ-mixing is too strict a requirement for many applications; for

1The definition of mixing coefficients and following results usually involve some measure-theoretic
technicalities that I deliberately omit to keep things simple.
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example, the autoregressive process from the preliminary considerations is not φ-mixing.
Most common time series models are both α- and β-mixing, although proving this is
often hard. It is commonly accepted to assume that one of the conditions holds. CLTs
can be established under all three forms of mixing. Since β-mixing is often the most
convenient, we will prove a CLT only for this condition in the following section. (This
also implies a CLT for φ-mixing processes by (7.1).)

First we state, without proof, a useful lemma relating the mixing coefficients to the
covariance structure of the data (Rio et al., 2017, eq. (1.12b) and Theorem 6.3).

Lemma 7.3.1. Let (Xt)t∈N be a stationary sequence of random variables with
E[Xt] = 0 and E[|Xt|q] ≤ K for some q > 2,K < ∞.

(i) It holds

Cov(Xt, Xt+h) ≤ α(h)1−2/qK2/q

(ii) If α(h) = O(h−γ) for some γ > q/(q − 2), there is q′ > 2 such that

E

∣∣∣∣∣
n∑

t=1
Xt

∣∣∣∣∣
q′ = O(nq′/2).

The lemma is stated in terms of strong mixing coefficients α(h), but the same result
holds for the other two coefficients by the relation (7.1).

The first part of the lemma shows that the lag-h covariance is bounded by (a power
of) the strong mixing coefficient. This is intuitive because the mixing coefficient
measures strength of dependence. And if there is little dependence, there should be
little correlation. How ‘direct’ this relation is depends on the moment condition. If q
is small (close to 2), the bound is very weak, because α(h) is raised to a power very
close to 0. If q is large (close to ∞), the bound is strong, because α(h) is raised to a
power close to 1. If the mixing coefficients decay quickly enough, this inequality can
be used to ensure summability of the covariances.

The second part of the lemma is a bit harder to interpret. It relates to the moments of
a sum over the sequence. By Jensen’s inequality, it also implies E[|

∑n
t=1Xt|2] = O(n),

which in turn implies

Var
[√
nXn

]
= O(1),

indicating that
√
n is the right scaling in a CLT. The importance of the result comes

from the fact that we can use a power q′ slightly larger than 2, which will allow us to
check Lyapunov’s condition (Lemma 2.6.5) in the proof of the CLT. In particular,

E


∣∣∣∣∣∣ 1√
n

j+kn∑
t=j

Xt

∣∣∣∣∣∣
q′ = O((kn/n)q′/2) = o(1),

whenever kn/n → 0.
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Figure 7.1: Illustration of the blocking technique: The data is divided into alternating
blocks of large and small size.

7.4 Coupling

Mixing coefficients quantify the dependence between the past and the distant future.
As the distance between the past and the future increases, the dependence should decay.
The idea is now to compare the original process with a process where the past and
(distant) future are exactly independent. The construction of such a second process is
called coupling. We give here, without proof, a coupling result for β-mixing processes.

Lemma 7.4.1 (Berbee’s maximal coupling). Let (Ys)s∈N be an Rd-valued process
with mixing coefficients β(h). Then for every t ∈ Z, h ≥ 1, there exists a process
(Y ∗

s )s∈N with the following properties:

(i) Y≥t+h
d= Y ∗

≥t+h,

(ii) Y ∗
≥t+h is independent of Y≤t,

(iii) P(Y≥t+h 6= Y ∗
≥t+h) = β(h).

Let’s read this in plain language. We start with an arbitrary time series Ys, whose
dependence we measure by the β-mixing coefficient. We now fix some time point t and
a gap h between what we consider past and (distant) future. The result says that we
can construct a new process Y ∗

s whose future values Y ∗
≥t+h . . .

(i) behave exactly like those of the original process,

(ii) are independent of the past of the original process,

(iii) differ from the original process only on an event with probability β(h).

Now suppose the dependence in the original process is weak, i.e., β(h) → 0 quickly as
h → ∞. We can now replace the future of the original process, without error and high
probability, by something entirely independent of the past. That’s quite remarkable!
It’s also a central piece in proving a CLT for β-mixing processes.

7.5 Central limit theorem for mixing variables

Proving a CLT for β-mixing processes relies on the combination of two clever ideas.
Bernstein’s blocking technique and coupling. The idea behind the blocking technique is
illustrated in Fig. 7.1. We partition the data X1, . . . , Xn into an alternating sequence
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of large blocks Ak,l and small blocks Bk,l size respectively. If we sum the data block-
wise and make the large blocks large enough, the small blocks become negligible
asymptotically. The key observation is the following: if the process is mixing, the
large blocks are almost independent of another because there are many observations
between them. Now we use coupling to replace the large blocks by independent ones.
The (independent) sum of large block sums thus satisfies a (triangular array) CLT.
This strategy gives us an important insight: short-term dependence is irrelevant for
whether a CLT holds or not, but the long-run dependence in the data needs to fade
out sufficiently fast.

Theorem 7.5.1. Let (Xt)t∈N be a stationary sequence of random variables. Suppose
that there is a q > 2 and γ > q/(q − 2), such that

E[|Xt|q] < ∞ and β(h) = O(h−γ).

Then

√
n(Xn − µ) d→ N (0, σ2), σ2 =

∞∑
h=−∞

Cov(Xt, Xt+h).

Before preceding to a formal proof, let’s discuss the key insights the theorem provides.
It holds,

σ2 =
∞∑

h=−∞
Cov(Xt, Xt+h) = Var[X1]

(
1 + 2

∞∑
h=1

Corr(Xt, Xt+h)
)
.

If all observations are uncorrelated, we indeed have σ2 = Var[X1] as in the independent
setting. If the observations are correlated, however, the asymptotic variance is generally
different. It can be both larger than under independence (if correlations are predominately
positive) or smaller (if correlations are predominately negative).
The second difference lies in the more assumptions. First, we require the existence

of moments of order q for some q > 2, while q = 2 was enough under independence.
The larger we choose q, the more restrictive the condition becomes. The second
condition constrains the decay of β(h), which should be interpreted as a constraint
on the asymptotic strength of dependence. The larger we choose q, the stronger the
dependence can be. If q is close to 2, we need to have β(h) = O(h−γ) for γ close to
∞—the dependence must fade out very quickly. The large we make q, the slower the
decay can be, approaching β(h) ∼ h−1 in the limit q → ∞. This reflects a fundamental
trade-off in dependent data: the stronger the dependence, the more moments we need
to exist (= random variables are less likely to take on extreme values/have lighter
tails).

Proof of Theorem 7.5.1. Without loss of generality, we assume E[X1] = 0.

Step 1: Bernstein’s blocking strategy. We divide the data into rn blocks of size ln.
Each of the rn blocks we split again into one large block of size ln − mn followed by
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one small block of size mn. We choose

rn ∼ lnn, ln ∼ n

lnn − n1/4, mn ∼ n1/4

in what follows. Let Ak,ln and Bk,l be the sums over the large and small blocks,
respectively:

Ak,ln =
kln−mn∑

t=(k−1)ln+1
Xt,ln , Bk,ln =

kln∑
t=kln−mn+1

Xt,j .

We have

Xn = 1
n

rn∑
k=1

Ak,ln + 1
n

rn∑
k=1

Bk,ln .

Step 2: Negligibility of small blocks. Observe that E[Bk,ln ] = 0 and, by Lemma 7.3.1
(ii) (and the following discussion), Var[Bk,ln ] = O(mn). Thus,

Var
[

1
n

rn∑
k=1

Bk,ln

]
= 1
n2

rn∑
k=1

Var[Bk,ln ] = O

(
rnmn

n2

)
= O

(
n1/4 lnn
n2

)
= o

( 1
n

)
.

This implies

√
nXn =

rn∑
k=1

Ak,ln√
n

+ op(1).

Step 3: Coupling. The idea is now to turn the large block sums A1,ln , . . . , Arn,ln into
an independent sequence using coupling. We start with setting A∗

1,ln
= A1,ln and then

iteratively apply Berbee’s lemma (Lemma 7.4.1) to construct A∗
2,ln

, . . . , A∗
rn,ln

such that
A∗

k,ln
is independent of A∗

1,ln
, . . . , A∗

k−1,ln
. By Lemma 7.4.1 it holds

P(Ak,ln 6= A∗
k,ln for some k) =

rn∑
k=1

P(Ak,ln 6= A∗
k,ln) = rnβ(mn) = n−γ/4 lnn → 0.

We thus have

√
nXn =

rn∑
k=1

A∗
k,ln√
n

+ op(1),

with probability tending to 1.

Step 4: Applying the Lindeberg-Feller CLT. The coupled large block sumsA∗
1,ln

, . . . , A∗
rn,ln

form a triangular array of independent observations, so we can apply the Lindeberg-
Feller CLT (Theorem 2.6.4) to prove our claim. It remains to check the conditions
of Theorem 2.6.4. We first check the converging covariance conditions. Because the
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blocks are iid,

rn∑
k=1

Var[A∗
k,ln/

√
n] = rn

n
Var[A1,ln ] = 1

ln

ln−mn∑
t=1

.

It holds ln/(ln −mn) → 1 and

1
ln −mn

Var[A∗
k,ln ] = 1

ln −mn
Var[A1,ln ] = 1

ln −mn

ln−mn∑
t=1

ln−mn∑
s=1

Cov(Xt,ln , Xs,ln)

= 1
ln −mn

ln−mn∑
t=1

ln−mn−t∑
h=1−t

Cov(Xt,ln , Xt+h,ln).

We have,

ln−mn−t∑
h=1−t

Cov(Xt,ln , Xt+h,ln) →
∞∑

h=1−t

Cov(Xt,ln , Xt+h,ln).

Since we are averaging infinitely many of these (bounded) terms, any finite number of
them can be discarded without changing the result. The only terms that matter are
those where we also take t → ∞, so

1
ln −mn

ln−mn∑
t=1

ln−mn−t∑
h=1−t

Cov(Xt,ln , Xt+h,ln) →
∞∑

h=−∞
Cov(Xt,ln , Xt+h,ln) = σ2.

We have shown,

rn∑
k=1

Var[A∗
k,ln/

√
n] → σ2,

verifying the converging covariance condition of Theorem 2.6.4
Next, we check Lyapunov’s condition. By Lemma 7.3.1 (ii), there is q′ > 2 such that

E[|Ak,ln/
√
n|q′ ] = 1

nq′/2E


∣∣∣∣∣∣

kln−mn∑
t=(k−1)ln+1

Xt,ln

∣∣∣∣∣∣
q′ = O

(
l
q′/2
n

nq′/2

)
.

Thus, setting δ = q′ − 2,

rn∑
k=1

E[|Ak,ln/
√
n|2+δ] = O

(
rnl

1+δ/2
n

n1+δ/2

)
= O

(
l
δ/2
n

nδ/2

)
= o(1),

which implies Lindeberg’s condition by Lemma 2.6.5.

7.6 Extension of our core theory

For our core theory (M-estimators, functionals) to continue working under dependence,
we need a uniform law of large numbers. That’s still possible. For example, the
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7 Dependent data

following is a generalization of Lemma 3.4.2 to β-mixing data.

Lemma 7.6.1. Let F by a class of functions with envelope F , i.e., |f(x)| ≤ F (x)
for all f ∈ F . Suppose there is q > 2 and γ > q/(q − 2), such that

E[F (Xt)q] < ∞ and β(h) = O(h−γ).

Then if for some C < ∞, α ∈ (0, 2),

lnN[](ε‖F‖Lq(P ),F , Lq(P )) ≤ Cε−α,

it holds

sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
f(Xi) − E[f(X)]

∣∣∣∣∣ = Op

(‖F‖Lq(P )√
n

)
.

We see that the main difference is a change of norm (from L2 to Lq) and the additional
conditions on moments and mixing rate from Theorem 7.5.1.
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