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Abstract

In regression analysis we attempt to quantify the relationship between a
response variable and a set of predictors. When the number of predic-
tors is large, it is computationally expensive to estimate the function that
encapsulates their relationship. In sufficient dimension reduction, we at-
tempt to reduce the high dimensional space of the predictors to a lower
dimensional space of linear combinations of the same predictors. In this
thesis we consider the sufficient dimension reduction paradigm applied
to the conditional mean of a regression model. In particular, we propose
a B-spline method to estimate the dimension reduction subspace. The lin-
earity of this estimation technique allows us to compute the estimation cri-
terion efficiently, and faster than existing competitors. Under some mild
conditions we prove that our proposed central mean subspace estimator
achieves

√
n-consistency and asymptotic normality, and show that our es-

timation of the structural dimension and central mean subspace are consis-
tent. Our approach to proving these results is centered around empirical
process theory. In simulations we demonstrate that our methodology is
easy to implement and performs well for various models.
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Chapter 1
Introduction

Many statistical problems are motivated by finding a relationship between
a response Y and a set of predictors X = (X1, ..., Xp)T ∈ Rp. When the
number of predictors p is large, in many situations there is redundant or
irrelevant information present among the predictors. Thus a method for
finding a subset of covariates that have a relevant relationship with the
response Y is desirable. There are two common approaches to this prob-
lem. The first is variable selection, where the assumption is made that
only a few covariates are truly related to the response, and all others have
no explanatory effect. The second approach is to use dimension reduc-
tion. In this setting one still assumes that many predictors could have ex-
planatory power, however these are expressed through a few linear com-
binations. The high-dimensional covariate space is then replaced by the
low-dimensional space of linear combinations. The problem of correctly
identifying the most informative smallest space of linear combinations of
covariates is known as the sufficient dimension reduction paradigm. Typi-
cally there is no pre-specified model required and minimal assumptions
are made, which makes this approach very appealing when one knows
there are only a few relevant linear combinations. The name is derived
from two concepts in statistics, sufficiency and dimension reduction.

When the relationship between Y and X is known, this significantly re-
duces the complexity of the problem. For example, if the mean of Y con-
ditional on X is a linear function in X, by which we mean that E(Y|X) =
βTX, this amounts to linear regression. If the function through which the
relationship between Y and X is expressed is unknown, but could be any
function g, this problem becomes significantly more difficult. The goal is
to determine a sufficiently large function space to estimate g, but not give
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2 Introduction

up any efficiency in the estimation of the dimension reduction subspace.
To make the least amount of assumptions, we could choose a model with
no finite or fixed number of parameters. Such a model is called a nonpara-
metric model. For our purposes it is sufficient to define a nonparametric
model as a model which is not parametric. A parametric model is a model
which is (smoothly) indexed by a Euclidean parameter. The estimation of
the parametric part in the dimension reduction, combined with nonpara-
metric estimation of the function which relates Y and βTX is an example
of semiparametric estimation.

1.1 Thesis Motivation

In Huang and Chiang (2017) a semi-parametric estimation criterion for
the sufficient dimension reduction model is presented. A Kernel regres-
sion-type estimator is used to estimate the nonparametric function. Then
a cross-validation criterion is proposed, simultaneously estimating the ba-
sis and structural dimension of the smallest dimension reduction, and the
bandwidth of a kernel estimator. Asymptotic results are proven, among
which

√
n-consistency and asymptotic normality. However this approxi-

mation is computationally expensive when n is not small, in part due to
the required n model estimations, once for each omitted case, in the cross-
validation criterion. The estimation method we propose is a linear model,
which allows us to estimate the model only once on the complete data set
(Seber and Lee (2012)). The idea for our estimator is rooted in the Stone-
Weierstrass theorem, which demonstrates that any continuous function on
the closed interval [a, b] can be arbitrarily closely approximated by poly-
nomials. Although appealing because of their simple form, polynomials
perform poorly for function approximation. A favorable alternative to es-
timate a function are splines, piecewise polynomials. We demonstrate that
we can use splines to estimate the unknown function, and obtain asymp-
totically similar results to Huang and Chiang. Results from empirical pro-
cess theory are applied to prove

√
n-consistency and asymptotic normality.

1.2 Overview

The first few chapters of this thesis are a gentle introduction to techniques
used in sufficient dimension reduction and techniques we use in our proofs.
Chapter 2 introduces kernel and spline methods for regression. In Chapter
3 we review some of the sufficient dimension reduction literature. We are

2
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1.2 Overview 3

particularly interested in fundamental results, such as the existence and
uniqueness of dimension reductions. We summarize Huang and Chiang
(2017), and review the motivation to use their estimation criterion. We
then propose our estimator, and explain the difference in the computation
of the cross-validation criterion. In Chapter 4 we familiarize the reader
with definitions and results from empirical process theory. This chapter is
based on van der Vaart and Wellner (1996). The goal is to give an exposi-
tion of major components of the modern theory of empirical processes. In
Chapter 5 we demonstrate how the results from empirical process theory
can be applied in a parametric version of the dimension reduction prob-
lem. We assume that the function which relates Y and βTX is known, and it
is seen how this simplifies our problem significantly. In Chapter 6 we pro-
pose a novel approach for estimating the sufficient dimension reduction
spaces. We use empirical process theory to prove consistency and a rate of
convergence. The main challenge in the latter is achieving sharp bounds
on certain maximal inequalities. We introduce the semi-parametric esti-
mation paradigm formally, and discuss how one can go about estimation
in this setting. By combining results we demonstrate with the theory from
Chapter 4 and the semiparametric framework, we show

√
n-consistency

and asymptotic normality. This first few sections in this chapter are based
on the first four chapters of the wonderfully written book Semiparametric
Theory and Missing Data written by Tsiatis (2006). To conclude our discus-
sion of sufficient dimension reduction, we perform simulations to demon-
strate how our approach can be implemented, and how it performs under
various models in Chapter 7.
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Chapter 2
Nonparametric Regression

In this chapter we briefly review two nonparametric estimation methods.
Nonparametric techniques allow the complexity of the fitted model to de-
pend on the sample: The larger the sample size, the greater the complexity
of the fitted model. In this setting it is acknowledged that fitted models are
approximations, and therefore inherently misspecified. This misspecifica-
tion implies estimation bias, however one can increase the complexity of
the fitted model in order to decrease this bias. As a result the estimation
variance is increased. This relation is known as the bias-variance trade-off,
and minimizing the mean squared error (MSE), a measure of fit, which
consists of both of these terms is a central problem in nonparametric esti-
mation. In the first section we give a heuristic derivation of kernel regres-
sion. The rest of the chapter is used to review a particular kind of spline
regression, B-splines, which we use in Chapter 6.

2.1 Kernel Regression

The idea of kernel density estimation resembles that of histograms, but
with some added ”smoothness”. Let X be a random variable drawn from
a probability density f . Then, for any x ∈ R and h > 0 sufficiently small,

P(X ∈ [x− h, x + h]) =
∫ x+h

x−h
f (u)du ≈ 2h f (x).

This yields,

f (x) ≈ 1
2h

P(X ∈ [x− h, x + h]).
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6 Nonparametric Regression

Figure 2.1: Some commonly used kernels.

This motivates our decision to estimate the probability density of X at x
by the relative frequency of observations in a small interval around this
point. If we observe independent and identically distributed (i.i.d.) copies,
X1, ..., Xn of X, we can estimate f by,

f̂ (x) =
1
n

n

∑
i=1

wh(x− Xi),

where w is a so-called window function, given by,

wh(x) =

{
1/2h, if x ∈ [x− h, x + h]
0, if x /∈ [x− h, x + h].

Note that our estimate for f (x) will only depend on observations that are
sufficiently ”close” to x. More generally, we can replace the weight w(x)
with a kernel. A kernel is a function K : R→ R that satisfies,∫

K(v)dv = 1;
∫

vK(v)dv = 0.

Some commonly used kernel functions are depicted in Figure 2.1. This
gives us an estimate of the shape of f , known as the kernel density estimator

f̂h(x) =
1

nh

n

∑
i=1

K
(

x− Xi

h

)
.

6
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2.1 Kernel Regression 7

Suppose we observe i.i.d. random copies (Xi, Yi); i = 1, ..., n, of (X, Y)
with,

Y = f (X) + ε, (2.1)

and E(ε|X) = 0. The conditional expectation of Y given X can be written
as,

E(Y|X) = f (X).

Model (2.1) is known in the literature as nonparametric regression with
random design.

The Nadaraya-Watson estimator with kernel K constructs an estimate of the
regression function f as,

f̂n,h(x) =
∑n

i=1 YiK(
x−Xi

h )

∑n
i=1 K( x−Xi

h )
,

where h > 0 is a smoothing parameter called the bandwidth of the kernel.
When the denominator equals 0, we estimate f by 0. Note that this is a
weighted average of Yi values, and the denominator is a weighting term.
It turns out that most choices for kernels K give similar results, and choos-
ing the optimal bandwidth value h is of much more importance for the
properties of the estimator. The value of the bandwidth determines how
much bias and variance you introduce in the estimation, the balancing of
these two quantities is the aforementioned bias-variance tradeoff. In prac-
tice we often choose h by cross-validation.

We often denote the dependence on h as Kh(· − Xi) =
1
h K( ·−Xi

h ). At each
observed point we place a kernel which has mass 1 and is centered around
the observed point. An example of a kernel is any probability density with
mean zero. A kernel Kq is of order q if additionally the (q− 1)-th moments
are zero, i.e. ∫

vkK(v)dv = 0 for k = 1, ..., q− 1,

and
∫

vqK(v)dv < ∞. Higher order kernels are kernels of order q > 2,
and have negative parts. As such, they are not probability distributions.
Higher order kernels can be obtained by multiplying a second order kernel
by a polynomial of order ( q

2 − 1) in x2. For example a kernel of order 4 is
defined by,

K4(x) =
1

2
√

2π
(3− x)2 exp(−x2

2
).
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8 Nonparametric Regression

If we have multivariate predictors X ∈ Rp, we can get multivariate kernels
by multiplying univariate kernels,

Kq,hp(u) =
p

∏
k=1

Kq(uk/hk)/hk, u = (u1, ..., up) ∈ Rp

where hp = (h1, ..., hp)T is a positive valued bandwidth vector, and Kq is
a q-th order (univariate) kernel function. We refer the interested reader to
Wasserman (2005) and Hastie et al. (2001) for a more detailed review of
kernel regression.

2.2 Splines

Analytic functions can be approximated locally reasonably well by poly-
nomial functions, for example by a Taylor polynomial of sufficiently high
order. A main drawback of using a polynomial to estimate a function is
the lack of robustness: a slight change of one data point may cause large
changes in the regression parameters and polynomial approximations. A
preferable method are piecewise polynomials, which only react locally to
changes in the data. These are known as splines. We use a spline func-
tion known as B-splines. B-splines have some very appealing properties,
for example, any B-spline can be written as a linear combination of ba-
sis functions. These basis functions have compact support, and are given
by explicit formulas. Splines are often used in applied mathematics, nu-
merical analysis, geometrical modelling, and in particular in applications
requiring the interpolation or smoothing of data. In the remainder of this
section we discuss the basic properties of univariate splines. In the rest
of this chapter we illustrate how B-splines are constructed and used in
regression-type problems. Then we review how these methods can be eas-
ily generalized to multivariate B-splines using tensor products.

Suppose we want to approximate a univariate function f : [L, U] → R.
A spline S(x) maps values from the interval [L, U] to the set of real num-
bers,

S : [L, U]→ R.

In particular we partition [L, U] into subintervals [ti, ti+1] such that S is a
polynomial on each subinterval. The points ti indicate where S changes
from one polynomial to another, and are called knots. A knot sequence t =
{t0, t1, ..., tK} is defined as an non-decreasing sequence of K + 1 knots, i.e.

L = t0 ≤ t1 ≤ ... ≤ tK = U,

8
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2.3 Function Approximation with B-splines 9

and we define polynomials pi such that,

S(x) ≡ pi(x) on [ti, ti+1), for i = 0, ..., K− 1.

The degree ρ of the polynomials which define S(x) is known as the degree
of the spline. The order of the spline is the degree plus one, i.e. ρ + 1.

2.3 Function Approximation with B-splines

B-splines were first described in Schoenberg’s (1988) paper Contributions to
the problem of approximation of equidistant data by analytic functions. It turns
out that any spline of a given degree ρ, can be written as a B-spline of that
same degree. Thus the B-splines form a basis for the space of spline func-
tions.∗ The smoothness of the estimate is usually enforced by requiring
the derivatives (up to the ρ− 1-th derivative) of the adjacent polynomials
to be the same at any knot. The function f (x) can be approximated using
a B-spline,

f̂ (x) = S(x) =
qn−1

∑
i=0

ψi,ρ(x)ai, (2.2)

where ψi,ρ(x), i = 0, ...qn − 1 are B-spline basis functions of degree ρ on a
knot sequence t, and ai are the corresponding coefficients. The basis func-
tions are also piecewise polynomials that are smoothly connected at the
knots, and are only non-zero on their respective domains. The amount of
smoothing is determined by the degree of the spline and the number of the
knots. The similarity of the role of the degree and number of knots for the
B-splines, and the degree and bandwidth in the kernel regression model
should be apparent. In this thesis we denote the spline approximation in
Equation (2.2) as the vector product,

ψ(x)Ta =
qn−1

∑
i=0

ψi,p(x)ai = (ψ0,ρ(x), ..., ψqn−1,ρ(x))


a0
a1
...

aqn−1

 . (2.3)

Whenever we write basis functions, it is implicit that there exist a sequence
of corresponding knots. The B-spline basis functions can be constructed
recursively by the Cox-de-Boor formula as follows,

ψi,0(x) =

{
1, if x ∈ [ti, ti+1)

0, otherwise,
(2.4)

∗Coincidentally, the ”B” stands for Basis.
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10 Nonparametric Regression

ψi,ρ(x) =
x− ti

ti+ρ − ti
ψi,ρ−1(x) +

ti+ρ+1 − x
ti+ρ+1 − ti+1

ψi+1,ρ−1(x). (2.5)

Figure 2.2 shows the B-spline basis functions up to degree 3 (order 4)
with 10 uniformly placed knots in the interval [0, 1]. B-splines basis func-

Figure 2.2: The sequence of B-splines up to order four. The ten knots are uni-
formly spaced from 0 to 1. (Hastie et al. (2001))

tions constructed by the Cox-de-Boor recursive formula have the follow-
ing properties:

1. Basis functions are non-negative, i.e., ψi,ρ(x) ≥ 0, for all x;

10
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2.3 Function Approximation with B-splines 11

2. At any point, B-splines of degree ρ sum to 1, i.e., ∑i ψi,ρ(x) = 1 for
all x in the interior domain;

3. For all points outside of their domain, the basis functions equal zero,
i.e. ψi,ρ(x) = 0 for all x /∈ [ti, ti+ρ+1);

4. ψi,ρ(x)
∣∣∣∣
x∈[ti+j,ti+j+1)

is a polynomial of degree ρ, for all j;

5. The derivative of a B-spline of degree ρ is another B-spline of degree
ρ− 1 and

ψ′i,ρ(x) = ρ

{
ψi,ρ−1(x)
ti+ρ − ti

−
ψi+1,ρ−1(x)

ti+ρ+1 − ti+1

}
;

6. When the knots are distinct, a B-spline of degree ρ, its derivatives are
continuous up to the ρ− 1-th derivative.

Version of February 15, 2022– Created February 15, 2022 - 14:10
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12 Nonparametric Regression

If we have repeating knots, the convention that 0/0 = 0 is used. Note that
B-splines are only non-zero on a compact subset, and are positive within
their support. This can be exploited to ensure a faster computation time
(for more details, see p. 186 in Hastie et al. (2001)). The partition of unity
property of B-splines (property 2) states that on any point within the natural
domain of a B-spline curve of degree ρ, which is given by [tρ, tqn−ρ−1], the
sum of B-splines on any point within this domain equals 1,

qn−1

∑
i=0

ψi,ρ(x) = 1, tρ ≤ x ≤ tqn−ρ−1.

From property 1 and 2 it follows that for splines of any degree ρ, at any
point x within its domain,

‖ψ(x)‖1 = ‖(ψ0,ρ(x), ψ1,ρ(x), . . . , ψqn−1,ρ(x))‖1 = 1. (2.6)

Let (X1, Y1), ..., (Xn, Yn) be drawn according to model (2.1). We slightly
abuse notation by denoting X = (X1, ..., Xn)T and Y = (Y1, ..., Yn)T in the
following. The B-spline of degree ρ estimating f takes the following form,

f̂ (X) =

 f̂ (X1)
...

f̂ (Xn)

 = ψ(X)Ta =

ψ0,ρ(X1) . . . ψqn−1,ρ(X1)
... . . . ...

ψ0,ρ(Xn) . . . ψqn−1,ρ(Xn)

 a.

We can estimate the coefficients a by minimizing the MSE,

S(a) = ‖Y− f̂ (X)‖2
2 = ‖Y− ψ(X)Ta‖2

2.

We can easily derive the minimizer of this expression, â, by setting the
gradient with respect to a to zero. For this, note that,

S(a) = (Y− ψ(X)Ta))T(Y− ψ(X)Ta))

= YTY− 2YTψ(X)Ta + (ψ(X)Ta)T(ψ(X)Ta),

∇aS(a) = −2ψ(X)TY + 2ψ(X)ψ(X)Ta,

∇2
aS(a) = ψ(X)Tψ(X).

These equations imply that whenever ψ(X) has full column rank, the Hes-
sian is positive semi-definite. Consequently, the minimizer of S(a) is equal
to

â = (ψ(X)ψ(X)T)−1ψ(X)Y. (2.7)

12
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2.4 Multivariate generalization of B-splines 13

2.4 Multivariate generalization of B-splines

We can generalize the B-spline theory we developed so far to the d-dimensional
case by using tensor products. We illustrate how we can compute the B-
spline basis functions for the simplest generalization, i.e., d = 2. Let
X = (X1, X2) ∈ R2, and Y ∈ R. We can compute the B-spline vectors
in X1 and X2 using Equations (2.4) & (2.5). We define,

ψ1(X1) = (ψ0,ρ(X1), ψ1,ρ(X1), . . . , ψq−1,ρ(X1))
T

ψ2(X2) = (ψ0,ρ(X2), ψ1,ρ(X2), . . . , ψq−1,ρ(X2))
T.

The spline surface that lies over the rectangle spanned by the knots can be
constructed as,

f̂ (X) = f̂ (X1, X2) =
q−1

∑
i1=0

q−1

∑
i2=0

ψi1,ρ(X1)ψi2,ρ(X2)ai1,i2 ,

where ai1,i2 is an element in the q× q coefficient matrix. We can write the
B-spline basis matrix ψ(X) as the tensor product of ψ1(X1) and ψ2(X2),

ψ(X) =


ψ0,ρ(X1)ψ0,ρ(X2) ψ0,ρ(X1)ψ1,ρ(X2) ... ψ0,ρ(X1)ψq−1,ρ(X2)
ψ1,ρ(X1)ψ0,ρ(X2) ψ1,ρ(X1)ψ1,ρ(X2) ... ψ1,ρ(X1)ψq−1,ρ(X2)

...
... . . . ...

ψq−1,ρ(X1)ψ0,ρ(X2) ψq−1,ρ(X1)ψ1,ρ(X2) ... ψq−1,ρ(X1)ψq−1,ρ(X2)

 .

Let vec(·) denote the vectorization operator that stacks the columns of a
matrix. The resulting spline surface then equals,

f̂ (X) = vec(ψ(X))Tvec(a).

For simplicity we use the shorthand notation f̂ (X) = ψ(X)Ta, and from
the context (i.e. the dimensionality of the basis tensor) it should be clear
that we consider vectorized tensor products. More generally, if X = (X1, ..., Xd)

T ∈
Rd, one can construct the d-dimensional hyper-surface from B-splines us-
ing the tensor product,

f̂ (X) = f̂ (X1, ..., Xd) =
q−1

∑
i1=0

q−1

∑
i2=0

...
q−1

∑
id=0

ψi1,ρ(X1)ψi2,ρ(X2) · ... ·ψid,ρ(Xd)ai1i2...id .

For simplicity we write the B-spline vectors for i = 1, ..., d,

ψi(Xi) = (ψ0,ρ(Xi), ψ1,ρ(Xi), . . . , ψq−1,ρ(Xi))
T.
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14 Nonparametric Regression

The B-spline basis tensor ψ(X) can then be written as the tensor product
of these B-spline vectors,

ψ(X) = ψ1(X1)⊗ . . .⊗ ψd(Xd).

The coefficients can be easily found in a similar manner as the one-dimensional
case, and the minimizer of the MSE is the same as in Equation (2.7), using
the vectorized tensor ψ(X). If f has p bounded derivatives, Section 5.3 in
Huang (2003) gives the following asymptotic bias,

sup
x
|E( f̂ (x)|X1, ..., Xn)− f (x)| = OP(q

−p
n ). (2.8)

We refer the interested reader to de Boor (1976) and Hastie et al. (2001) for
a more elaborate overview of B-splines.

14
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Chapter 3
A Review of Sufficient Dimension
Reduction Literature

In this chapter we give a formal introduction to the sufficient dimension
reduction (SDR) paradigm. We state some useful properties and give the
particular setting we consider in the following chapters. Some of the SDR
literature is reviewed, and the article that motivated this thesis is discussed
in detail. Lastly, we present our approach to the estimation of the central
mean subspace.

3.1 Introduction

A statistic is a function T = T(X1, ..., Xn) of a random sample X1, ..., Xn
from a density function pθ parametrized by θ. We call this statistic suffi-
cient for θ if the random sample X1, ..., Xn does not contain any additional
information about the parameter θ, other than the statistic. Intuitively
this means that any information about θ we can extract from our random
sample, is already contained in our statistic T. The sufficient dimension
reduction paradigm combines this idea with that of dimension reduction.
Let Y ∈ R be the response variable, and let X = (X1, ..., Xp) be the p-
dimensional covariates. A dimension reduction is a mapping from Rp to
Rd, with d < p. In SDR we consider linear combinations of our covari-
ates. Consequently, we can write the dimension reduction as βTX, with
β ∈ Rp×d. In regression analysis our goal is to study the relationship be-
tween Y and the covariates X. One class of dimension reduction problems
in regression analysis concern the distribution of Y conditional on X, i.e.

Version of February 15, 2022– Created February 15, 2022 - 14:10
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16 A Review of Sufficient Dimension Reduction Literature

the distribution of Y|X. Here, we assume there exists a matrix β such that

P(Y ≤ y|X) = P(Y ≤ y|βTX), almost surely. (3.1)

Note that if such a matrix β exists, then as far as the relation between Y
and X is concerned, the covariates X can be replaced by the d-dimensional
linear combinations βTX. Typically d is much smaller than p. Thus the
regression problem with a p-dimensional covariate is converted to one
with a d-dimensional covariate. The problem is to correctly identify the
column subspace of a matrix β that satisfies (3.1), with the smallest num-
ber of columns. We denote this space by SY|X, and it is called the central
subspace (CS). Although the central subspace problem provides the most
comprehensive description of the relationship between the response vec-
tor and covariates, sometimes only certain properties of the relation are
of interest. In this thesis we are interested in the dependence of the mean
of Y conditional on X, that is, E(Y|X). In this setting, the assumption is
weakened to,

E(Y|X) = E(Y|βTX), almost surely, (3.2)

for a p × d matrix β. The column space of the matrix β with the lowest
dimension satisfying relation (3.2) is called the central mean subspace (CMS)
and is denoted by SE(Y|X). This setting has been generalized to the central
k-th moment subspace by Yin and Cook (2002). The central k-th moment
subspace S(k)

Y|X is the column space of a p × d matrix β with the smallest
number of columns d satisfying,

E(Y j|X) = E(Y j|βTX), almost surely, for j = 1, ..., k.

3.2 Properties

Note that we can reformulate Equation (3.2) as

Y = E(Y|βTX) + ε, with E(ε|X) = 0.

Since we are estimating a space instead of the more classical statistical
setting in which we estimate parameters, there are some caveats which
we must account for, such as existence, uniqueness, and identifiability.
The existence of the smallest SDR subspace is, except for some degener-
ate cases, guaranteed, and it is uniquely defined (Cook (2004)). Further-
more, if Z = V−1(X − u) for a symmetric invertible matrix V and any
p-dimensional vector u, then

E(Y|(Vβ)TZ) = E(Y|βTVV−1(X− u)) = E(Y|βTX).

16
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3.3 Central Mean Subspace Literature 17

This implies the so-called invariance property, which was first coined by
Cook (1995):

SE(Y|X) = V−1SE(Y|Z).

This property implies that we can center and normalize (i.e., assume that
X has mean zero and variance Ip) the covariates without loss of generality.

Identifiability

It is easily seen that β is typically not identifiable. In particular, for any
full rank dxd matrix A, βA will generate the same column space as β. Ma
and Zhu (2013) adopted the local coordinate system of the Grassmann-
manifold to resolve this problem. By restricting our set of matrices to all
p× d matrices β of the form β = (Id, CT)T, where Id is the d× d identity
matrix and the lower submatrix C has dimensions (p− d)× d. Then any
two matrices β1A and β2A are different if and only if the column space
of β1 and β2 are different. Note that the first d components of the model
must contain explanatory power in this parametrization. We can rotate
the order of covariates to guarantee that the first d covariates play a role
in the estimation procedure. The columns of C are the relative effects of
(Xd0+1, ..., Xp)T compared to Xj, for j = 1, ..., d0. In this parametrization
the CS and CMS are essentially objects with (p− d)d degrees of freedom.
It should be understood that whenever we use β in the context of SDR,
we use the Grassman parametrization in the rest of this thesis, i.e. β =
(Id, CT)T for a parameter matrix C.

3.3 Central Mean Subspace Literature

The central mean subspace is formalized in the following definition. Let
S(β) denote the column space of a matrix β.

Definition 3.1 (Definition 1, Cook and Li (2002)) If Y ⊥⊥ E(Y|X)|βTX, then
S(β) is a mean dimension-reduction subspace for the regression of Y on X.

This is equivalent to condition (3.2) by Proposition 1 in Cook and Li (2002).
The notion of the smallest dimension reduction is formalized in the follow-
ing definition.

Definition 3.2 Let SE(Y|X) = ∩mSm, where Sm are all the mean dimension re-
duction subspaces. If SE(Y|X) is itself a mean dimension-reduction subspace, it is
called the central mean subspace (CMS).
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18 A Review of Sufficient Dimension Reduction Literature

As the definition above suggests, the existence of the CMS is not guaran-
teed. The intersection of two mean dimension-reduction subspaces does
not necessarily form another dimension-reduction subspace. However
when it does exist, it is clear that it must be the smallest DR subspace. Ad-
ditionally the CMS is a subspace of the central subspace, because the latter
contains all the information that X conveys about Y, whereas the former is
only focused on the conditional mean. There exist rather mild conditions
under which the central subspace exists, and under similar conditions the
existence of the CMS is guaranteed as well. One such condition is that if
the domain of X is open and convex, then the CMS exists and is unique
(Cook and Li (2002)). In the rest of this thesis we assume that the CMS
exists and is unique.

3.3.1 Estimation of the CMS

We briefly review three approaches to the estimation of SE(Y|X): Inverse
regression based methods, nonparametric methods, and semi-parametric
methods. The first two are not reviewed in detail, and we refer the inter-
ested reader to Ma and Zhu (2013) for a more elaborate treatment of the
these approaches. A large portion of the rest of this chapter is dedicated to
the approach used in Huang and Chiang (2017). We then proceed to our
own estimation procedure, which is heavily inspired by the latter.

Inverse Regression Based Methods

The idea behind inverse regression is to reverse the relation between the
response variable Y and the covariates X (see Li (1991)). Instead of consid-
ering the expectation of Y conditional on X, we consider the expectations
of X conditional on Y. Note that this circumvents the so-called curse of di-
mensionality when X is high dimensional, because Y is univariate. Often
additional assumptions on the relationship between the covariates X and
the lower-dimensional βTX, which include the linearity condition,

E(X|βTX) = PX,

for P = β(βTβ)−1βT. Some of the inverse regression based methods re-
quire a constant variance condition,

cov(X|βTX) = Q,

18
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3.3 Central Mean Subspace Literature 19

for Q = I − P. These assumptions only need to hold at the true value of
β = β0, however since β0 is unknown, they are often strengthened to hold
for all possible β. One approach in the inverse regression for estimating
the CMS is Principal Hessian Directions (Li (1992)).

Nonparametric Methods

The class of nonparametric estimation is based on estimating the column
space of β through minimizing a criterion that describes the fit of the DR
models to the observed data. One of these methods is the minimum aver-
age variance estimation method (MAVE, Xia et al. (2002)). In this setting
we require that βT

0 β0 = Id0 . The MAVE procedure then minimizes the
objective function,

E(var(Y|βTX)) = E(Y− E(Y|βTX))2,

over all matrices β such that βTβ = Id. A first order Taylor expansion is
then used to approximate E(Y|βTX), and a kernel function is used to non-
parametrically approximate the first derivative of the conditional mean.

Semiparametric Methods

In the semi-parametric paradigm, methods from semi-parametric statistics
are applied. The likelihood of one observation (X, Y) equals,

η1(X)η2(Y− g(βTX), X), g(βTX) = E(Y|βTX),

where η1 is the marginal density, and η2 is the conditional density function.
These two functions, and g are viewed as nuisance parameters, and we are
interested solely in β. In Ma and Zhu (2014) a class of functions called the
influence functions are derived. The complete class of influence functions
provide all the possible consistent estimators. The properties of these esti-
mators are then studied through the influence functions. Semi-parametric
theory is developed in Chapter 6, and we derive the nuisance tangent
spaces. We also discuss how the influence functions could be found once
the nuisance tangent spaces are known. Our approach however does not
rely on the nuisance tangent space to find estimators, we define an esti-
mator and then prove that desirable asymptotic properties hold using the
nuisance tangent space.
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20 A Review of Sufficient Dimension Reduction Literature

3.4 Huang and Chiang’s Method

The main objective of Huang and Chiang’s (2017) paper is the estimation
of the central subspace. For completeness we state some of the results de-
rived by Huang and Chiang regarding this estimation procedure. Once
we are familiar with the technique, we show that similar reasoning jus-
tifies the estimator for the CMS utilized in Chapter 6. The large sample
properties are discussed in Chapter 5 and Chapter 6.

3.4.1 Central Subspace Estimation

Let 1(·) denote the indicator function. Huang and Chiang’s estimation
procedure is based on the following equality,

E(1(Y ≤ y)|X = x) = P(Y ≤ y|X = x), for all (x, y).

Thus the central subspace estimation is equivalent to integrating the esti-
mation of the CMS of 1(Y ≤ y) over the domain of Y, which we denote as
Y . We introduce the following notation,

βd = (Id, CT
d )

T, with Cd a (p− d)× d matrix;

FCd(y|u) = P(Y ≤ y|βT
d X = u);

FY(y) = P(Y ≤ y);

F̂n(y) =
1
n

n

∑
i=1

1(Yi ≤ y);

〈 f1(·), f2(·)〉L2 =
∫
Y

f1(y) f2(y)dFY(y), for any function f1, f2;

‖ f ‖L2 =
√
〈 f (·), f (·)〉L2 , for any functions f .

Proposition 1 in Huang and Chiang (2017) motivates the choice of the
semi-parametric framework, and highlights the role FCd plays in the es-
timation.

Proposition 3.1 (Proposition 1, Huang and Chiang (2017)) For a given βd,
FCd(y|u) minimizes the mean integrated square error (MISE),

E‖1(Y ≤ ·)− G(·, βT
d X)‖2

L2
,

over all (d + 1)-variate functions G(y, u). Moreover the basis matrix β of a SDR
subspace minimizes E‖1(Y ≤ ·)− FCd(·|β

T
d X)‖2

L2
over all βd.

20
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3.4 Huang and Chiang’s Method 21

This implies it is sensible to use the conditional distribution FCd(y|u) to
estimate β0. By the existence and uniqueness of the central subspace, and
the second part of Proposition 1, it follows that

E‖1(Y ≤ ·)− FCd(·|β
T
d X)‖2

L2
> E‖1(Y ≤ ·)− F(·|βT

0 X)‖2
L2

for all βd such that, S(β0) * S(βd). However, note that we have,

E‖1(Y ≤ ·)− FCd(·|β
T
d X)‖2

L2

{
> E‖1(Y ≤ ·)− F(·|βT

0 X)‖2
L2

, if S(βd) + S(β0)

= E‖1(Y ≤ ·)− F(·|βT
0 X)‖2

L2
, if S(βd) ⊇ S(β0).

Consequently, this criterion fails to distinguish the true model from over-
fitted ones. This implies that when the true dimensions of the central sub-
space (denoted by d0) is unknown, we can’t simply use the sample ana-
logue of the MISE to estimate d0. Therefore we use a cross-validated ver-
sion of the sample MISE to determine d0 and estimate β0. Huang and Chi-
ang use leave one out cross-validation (LOOCV), where one estimates the
conditional distribution FCd(·|β

T
d X) based on all data minus one observa-

tion, and considers left out data point one as a ”new” observation. The er-
ror is then computed for this new observation, and this is performed for all
individual data points. Let F̂Cd denote an estimator of FCd . This approach
relies on the fact that for an independent ”new” observation (X0, Y0) we
have,

E‖1(Y0 ≤ ·)− F̂Cd(·|β
T
d X0)‖2

L2
= E‖1(Y0 ≤ ·)− F(·|βT

0 X0) + F(·|βT
0 X0)

− FCd(·|β
T
d X0) + FCd(·|β

T
d X0)− F̂Cd(·|β

T
d X0)‖2

L2

= σ2
0 + b2

0(Cd) + E‖F̂Cd(·|β
T
d X0)− FCd(·|β

T
d X0)‖2

L2

+ 2E〈FCd(·|β
T
d X0)− F(·|βT

0 X0), F̂Cd(·|β
T
d X0)− FCd(·|β

T
d X0)〉L2 ,

where,

σ2
0 = E‖1(Y0 ≤ ·)− F(·|βT

0 X0)‖2
L2

, and

b2
0(Cd) = E‖FCd(·|β

T
d X0)− F(·|βT

0 X0)‖2
L2

.

The terms that equal zero are omitted.∗ Note that b2
0(Cd) = 0 if and only if

S(βd) ⊇ SY|X.

∗These are the terms that include 1(Y0 ≤ ·)− F(·|βT
0 X0), which equals zero in expec-

tation, in the inner product.
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22 A Review of Sufficient Dimension Reduction Literature

The conditional distribution is estimated by the Nadaraya-Watson estima-
tor,

F̂Cd(y|u) =
∑n

i=1 NiyKq,hd
(βT

d Xi − u)

∑n
i=1 Kq,hd

(βT
d Xi − u)

,

where Kq,hd
(u) = 1

hdk
∏d

k=1 Kq(
uk
hdk

), and positive-valued bandwidth vector
hd = (hd1, ..., hdd)

T. The following pseudo sum of integrated squares (PSIS)
inspired by Chiang and Huang (2012) is proposed as a sample analogue
of the MISE,

PSIS(Cd0) =
1
n

n

∑
i=1

∫
(1(Yi ≤ y)− F̂Cd0

(y|βT
d0

Xi))
2dF̂Y(y)

=
1
n

n

∑
i=1

n

∑
j=1

(1(Yi ≤ Yj)− F̂Cd0
(Yj|βT

d0
Xi))

2.

The LOOCV PSIS is then defined as,

CV(d, Cd, hd) =
1
n

n

∑
i=1

∫
Y
(1(Yi ≤ y)− F̂−i

Cd
(y|βT

d Xi))
2dF̂Y(y)

=
1
n

n

∑
i=1

n

∑
j=1

(1(Yi ≤ Yj)− F̂−i
Cd
(Yj|βT

d Xi))
2.

(3.3)

The minimizer of this cross-validated PSIS over all possible (p − d) × d-
dimensional matrices and bandwidths, which is a function in d, converges
in probability to a strictly convex function with unique minimizer d0. As
a result the estimation criterion for the central subspace and conditional
density can be carried out by a forward algorithm, where in the PSIS d
is fixed, and is minimized by starting with d = 0 and increased in each
iteration until the first local minimum is reached. Since in each iteration
of the double sum we need to recalculate the model, leaving out the i-th
observation, computation of this criterion grows at rate O(n3).

3.4.2 Central Mean Subspace Estimation

We now derive the CV-criterion for estimating the central mean subspace
along the same lines. We define the conditional expectation,

gCd(u) = E(Y|βT
d X = u). (3.4)

22
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3.4 Huang and Chiang’s Method 23

The mean squared error (MSE),

E(Y− gCd(βT
d X))2

{
> E(Y− E(Y|βT

0 X))2, if S(βd) + S(β0)

= E(Y− E(Y|βT
0 X))2, if S(βd) ⊇ S(β0).

This implies the sample analogue of the MSE fails to distinguish the true
model from overfitted ones. Consequently we use a CV criterion to de-
termine d0 and estimate β0, equivalently to the estimation of the central
subspace. For a ”new” independent observation (X0, Y0) the MSE equals,

E(Y0 − ĝCd(βT
d X0))

2 = E
(

Y0 − E(Y|βT
0 X0) + E(Y|βT

0 X0)− gCd(βT
d X0)

+ gCd(βT
d X0)− ĝCd(βT

d X0)

)2

= E(Y0 − E(Y|βT
0 X0))

2 + E(E(Y|βT
0 X0)− gCd(βT

d X0))
2

+ E(gCd(βT
d X0)− ĝCd(βT

d X0))
2

+ 2E
(
(Y0 − gCd(βT

d X0))(gCd(βT
d X0)− ĝCd(βT

d X0))

)
.

The terms that equal zero are omitted.† The second term equals zero if
and only if S(βd) ⊇ SE[Y|X]. In Remark 3 of Huang and Chiang (2017) it
is mentioned that one can estimate (d0, C0) in the CMS setting with the
following cross-validation criterion

CV(d, Cd) =
1
n

n

∑
i=1

(Y− ĝ−i
Cd
(βT

d Xi))
2. (3.5)

In particular they use kernel regression to now estimate the conditional
mean,

ĝCd(u) =
∑n

i=1 YiKq,hd
(βT

d Xi − u)

∑n
i=1 Kq,hd

(βT
d Xi − u)

. (3.6)

Note that the the LOOCV makes the estimation of the central (mean) sub-
space costly. This is in part due to the n estimations of the model, once
for each omitted case. Computation of the CV-criterion in the CMS setting
grows at rate O(n2). If we write the LOOCV statistic from Equation (3.5)
as,

CV =
1
n

n

∑
i=1

e2
[i] =

1
n

n

∑
i=1

(Yi − Ŷ[i])
2,

†These are the terms which contain Y0− E(Y|βT
0 X0), which equals zero in expectation.
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where Y[i] is the predicted value obtained when the model is estimated
with the i-th data point deleted, i.e.

Ŷ[i] = ĝ−i
Cd
(β̂T

d Xi).

3.4.3 A novel approach for the CMS estimation

Using B-splines, we can use the following linear representation for Ŷ,

Ŷ = ψ(β̂T
d X)T â,

for the vectorized B-spline basis tensor ψ(β̂T
d X), and a vector of coefficients

â = (ψ(βT
d X)ψ(βT

d X)T)−1ψ(βdX)TY (see Equation (2.7)). We define the hat
matrix H as,

H = ψ(βT
d X)T(ψ(βT

d X)ψ(βT
d X)T)−1ψ(βT

d X). (3.7)

Note that the estimate of Y‡ equals,

Ŷ = ψ(βT
d X)T â = HY.

If we let h1, ..., hn be the diagonal values of H, the LOOCV criterion can be
computed using,

CV(d̂, β̂, ĝCd) =
1
n

n

∑
i=1

(
ei

1− hi

)2

, (3.8)

where ei = Yi − Ŷi, and Ŷi is the predicted value when all the data is used.
Thus due to the linearity of the B-spline estimation, the computation of
the CV-criterion in the CMS only grows at rate O(n). The computation of
the hat matrix is O(n3), but for moderate n it is still very fast. For a proof
of Equation (3.8), we refer the reader to Seber and Lee (2012). Another
possible approach is to split the data into K clusters, and perform K-fold
cross-validation. Here one trains the data on the K − 1 clusters of data,
and then computes the error on the K-th cluster. This is then performed
for each individual cluster. In Chapter 6 we prove that consistency holds
for such an estimator.

‡Which is often referred to as Y-hat in vernacular.
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Chapter 4
Empirical Processes and
M-estimation

Following the introduction to the problem setting and our approach to the
estimation of the central mean subspace, in this chapter we discuss the
techniques we use in our proofs. The theory of empirical processes is a
very powerful tool in the analysis of estimators. This exposition mostly
consists of a collection of results we need later on, and some of the results
that are especially noteworthy are discussed in length. Consequently, this
exposition is rather superficial, and in no way does justice to the many use-
ful results that come from this area of research. This exposition is based
on parts of van der Vaart and Wellner (1996). In particular we highlight
sections from Chapter 2 and 3 in Section 4.2 and 4.3, respectively, and
omit the exposition of the modern weak convergence theory and many
measure-theoretical details. Section 4.2 is mostly an exposition of entropy
calculations, and in Section 4.3 we attempt to highlight how we can apply
these in M-estimation.

4.1 Setup and Notation

Let X1, ..., Xn be i.i.d. copies of a random variable X taking values in a mea-
surable space (X ,A). Let F be a class of measurable real-valued functions
defined on a measurable space (S,S). We assume that for any f ∈ F , the
absolute value of the mean is finite, i.e., E| f (X)| < ∞. We define an enve-
lope function of F as any function F(x) such that | f (x)| ≤ F(x), for every
x and f ∈ F . The minimal envelope function is x 7→ sup f∈F | f (x)|. The ex-
pectation of a function f ∈ F under the probability measure P is written
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26 Empirical Processes and M-estimation

as,
P f = EP f (X) =

∫
S

f dP.

We denote the empirical measure as Pn, which gives the expectation of f
under the empirical measure:

Pn f =
1
n

n

∑
i=1

f (Xi).

Note that Pn is an estimator of P( f ). In fact, by the strong law of large
numbers (SLLN) for each f ∈ F we have,

Pn f a.s.→ P f .

The centered and scaled version of the empirical measure is given by,

Gn f =
√

n(Pn f − P f ) =
1√
n

n

∑
i=1

( f (Xi)− P f (X)).

If we assume that additionally P f 2 < ∞, a direct consequence of the cen-
tral limit theorem (CLT) is that,

Gn f d→ N(0, P( f − P f )2).

To use results in empirical process theory, we typically need a stronger
result than the strong law of large numbers or the central limit theorem.
In order to discuss a uniform version of the LLN or CLT we introduce the
notation

‖Q‖F = sup{|Q f | : f ∈ F},
where Q is some probability measure.

4.2 Glivenko-Cantelli classes and Entropy

We define Glivenko-Cantelli and Donsker classes formally in the following
two definitions.

Definition 4.1 A class F of measurable functions f : X → R is called P-
Glivenko-Cantelli if

‖Pn − P‖F = sup
f∈F
|Pn f − P f | a.s.→ 0.

26
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4.2 Glivenko-Cantelli classes and Entropy 27

Definition 4.2 A class F of measurable functions is called P-Donsker if the se-
quence of processes {Gn f : f ∈ F} converges in distribution to a tight limit
process in the space l∞(F ).

The two definitions above are not very instructive, and don’t provide us
a clear approach to demonstrate these properties for a class of functions.
However, it turns out that whether a class of functions is Glivenko-Cantelli
or Donsker depends on the size of the class. We state these results in The-
orem 4.1 and 4.2. We first require a notion of measuring the size of a func-
tion class. One such measure is formulated in terms of the entropy of a
function class. The entropy is a relatively simple way to measure the size
of a class F . The ε-entropy of F is the logarithm of the number of ”balls”
or ”brackets” of size ε needed to cover F . This is formalized in the follow-
ing definitions.

Definition 4.3 The covering number N(ε,F , ‖ · ‖) is the minimal number of
balls {g : ‖g − f ‖ < ε} of radius ε needed to cover the set F . The entropy
(without bracketing) is the logarithm of the covering number. The centers of
the balls do not need to be in F , but they should have finite norms.

Definition 4.4 Given two functions l, u : X → R the bracket [l, u] is the set of
all functions f with l ≤ f ≤ u. An ε-bracket relative to ‖ · ‖ is a bracket [l, u]
with ‖u − l‖ < ε. The bracketing number N[](ε,F , ‖ · ‖) is the minimum
number of ε-brackets needed to cover F . The entropy with bracketing is the
logarithm of the bracketing number. The upper and lower bounds u and l of the
brackets do not need to belong to F , but they should have finite norms.

Note that as ε tends to zero, the entropy grows to infinity. The most intu-
itive type of sets whose metric entropy we can consider are spheres in a
Euclidean space.

Lemma 4.1 (Lemma 5, Shen and Wong (1994)) Let S be a sphere of size r in Rq

at the origin, that is,

S = {x = (x1, ..., xq) ∈ Rq :
q

∑
i=1

x2
i ≤ r2}.

Then, for any ε < r,

log N[](ε, S, ‖ · ‖1) . q log
(

q1/2 r
ε

)
, and

log N[](ε, S, ‖ · ‖2) . q log
(

r
ε

)
.

(4.1)
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Sufficient conditions for a class to be Glivenko-Cantelli or Donsker can be
given in terms of the rate at which the entropy grows as ε tends to zero.
Let P be any probability measure. The the Lr(P)-metric is defined as,

‖ f ‖Lr(P) = (P| f |r)1/r =

( ∫
Ω
| f (x)|rdP(x)

)1/r

.

The space of all functions that satisfy ‖ f ‖Lr(P) < ∞, equipped with the
Lr(P) norm, is called the Lr(P)-space. For the Lr(P) norm, for any r, the
Riesz property holds: for a pair of functions f , g, if | f | ≤ |g|, then ‖ f ‖Lr(P) ≤
‖g‖Lr(P). We can use the fact that if f is in the 2ε-bracket [l, u], it is also in
a ball of radius (l + u)/2, and thus,

N(ε,F , ‖ · ‖Lr(P)) ≤ N[](2ε,F , ‖ · ‖Lr(P)). (4.2)

There is no general converse inequality.

Theorem 4.1 (Glivenko-Cantelli) Let F be a class of measurable functions such
that N[](ε,F , L1(P)) < ∞ for every ε > 0. Then F is P−Glivenko-Cantelli.

A similar result exists that relates a class being Donsker to the rate at which
the integral of the entropy with bracketing grows as ε ↓ 0.

Theorem 4.2 Let F be a class of measurable functions such that its bracketing
integral defined as,

J[](δ,F , L2(P)) =
∫ δ

0

√
log N[](ε,F , L2(P))dε < ∞

for every ε > 0. Then F is P-Donsker.

Determining the covering or bracketing number can be difficult without
any additional information. In Section 2.7 in van der Vaart and Well-
ner (1996) some very useful results are offered, on for example classes
of monotone functions, classes of convex functions over closed sets, or
classes that are Lipschitz in a parameter. The last one proves particularly
useful in our setting, as will be demonstrated repeatedly in our entropy
calculations in Chapter 6.

Theorem 4.3 (Theorem 2.7.11, van der Vaart and Wellner (1996)) Suppose that
a function class F = { ft : t ∈ T} is Lipschitz in the index parameter t ∈ T, i.e.

| fs(x)− ft(x)| ≤ d(s, t)F(x) (4.3)

for some metric d on the index set T, fixed function F on the sample space and
every x. Then, for any norm ‖ · ‖,

N[](2ε‖F‖,F , ‖ · ‖) ≤ N(ε, T, d). (4.4)

28
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4.3 M-estimation 29

Additionally (diamT)F is an envelope function for the class { ft − ft0 : t ∈
T} for any fixed t0. The parameters of interest in our model are the coeffi-
cients of the B-splines, and the parameter matrix. Since for fixed n both of
these are Euclidean, the entropy numbers of the parameters could be cal-
culated relatively easily. The bracketing number of our function class can
then be bounded by the covering numbers of the parameters we calculate
if they satisfy Equation (4.3).

4.3 M-estimation

In this section we attempt to give the reader a notion of how M-estimation
(M for ”maximum”) relates to our problem, and how we apply the theory
discussed in the previous section in our problem. In M-estimation we con-
sider estimators θ̂n that maximize an empirical criterion function Mn(θ).
In particular we focus on criterion functions that can be written as,

Mn(θ) = Pnmθ,

for loss functions mθ. Note that although it is typically omitted from no-
tation, these are functions of the observed data. In order to obtain the
limiting distribution of M-estimators, the following steps are typically per-
formed:

1. Establish consistency of θ̂n to θ0.

2. Establish a rate of convergence of θ̂n to θ0.

3. Derive the limiting distribution of θ̂n.

The rest of this section is dedicated to the results we use to prove consis-
tency and rate of convergence.

4.3.1 Consistency

We can demonstrate consistency by using the following result.

Theorem 4.4 (Corollary 3.2.3, van der Vaart and Wellner (1996)) Let Mn be
stochastic processes indexed by a metric space Θ, and let M : Θ → R be a
deterministic function. Suppose that,

‖Mn −M‖Θ → 0, (4.5)
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30 Empirical Processes and M-estimation

in outer probability, and that there exists a point θ0 such that,

M(θ0) > sup
θ /∈G

M(θ) (4.6)

for every open set G that contains θ0. Then any sequence θ̂n, such that Mn(θ̂n) ≥
supθ Mn(θ)− oP(1), satisfies θ̂n → θ0 in outer probability.

We emphasize the presence of condition (4.5). From our discussion in the
previous section, and the assumption that our data is i.i.d., it is apparent
that we need to perform entropy calculations in order to show that the
class of loss functions {mθ : θ ∈ Θ} is Glivenko-Cantelli.

4.3.2 Rate of Convergence

In the parametric setting the rate of convergence of an estimator to the
”truth” is typically of order

√
n. We, however, consider M-estimators

where the dimension of the parameter is not necessarily finite. Addition-
ally, as we discussed in Chapter 2, in the nonparametric regression there is
an implicit assumption that the ”truth” is not contained in our parameter
space, i.e. there is an estimation bias present. We can reduce this bias by
allowing our model become ”richer” as the sample size grows. Thus we
consider sieved M-estimators, the sieves Θn being a sequence of subsets of
the parameter space. In this setting the loss functions mn,θ are dependent
on the sieve. The estimators θ̂n maximize Mn over the sieve Θn.

Corresponding to the criterion functions Mn, we define centering functions,
Mn. Typically these are taken to be the expectation of the loss function, but
this is not a requirement. We then let θn be the maximizer of the centering
function, paralleling the maximization of Mn. In this paradigm it is then
reasonable to want the estimators θ̂n be as close as possible to the maxi-
mizer θn of the centering functions Mn. We can think of ‖θn − θ0‖ as the
distance of the sieve Θn to θ0. If Θn is a Euclidean space, and we assume
Mn is at least twice continuously differentiable at θn with non-singular
second-derivative matrix, we can use Taylor expansions around θ0 to find,

Mn(θ)−Mn(θn) = Mn(θn) + M′n(θn)(θ − θn) +
1
2

M′′n(θn)(θ − θn)
2

+ O(‖θ − θn‖3)−Mn(θn)

= M′(θn)(θ − θn) +
1
2

M′′(θn)(θ − θn)
2

+ O(‖θ − θn‖3).

(4.7)

30
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4.3 M-estimation 31

Since θn maximizes Mn, the first derivative must vanish at θn and the sec-
ond derivative should be negative. Thus it is reasonable to require,

Mn(θ)−Mn(θn) ≤ −d2
n(θ, θn),

where dn is an arbitrary non-negative map on Θn.

Theorem 4.5 (Theorem 3.4.1, van der Vaart and Wellner (1996)) For each n, let
Mn and Mn be stochastic processes indexed by a set Θ. Let θn ∈ Θ (possibly
random) and 0 ≤ δn < η be arbitrary, and let θ 7→ dn(θ, θn) be an arbitrary
map (possibly random) from Θ to [0, ∞). Let [·]+ = max{0, ·}. Suppose that,
for every n and δn < δ ≤ η

sup
δ/2<dn(θ,θn)≤δ,θ∈Θn

Mn(θ)−Mn(θn) ≤ −δ2,

E sup
δ/2<dn(θ,θn)≤δ,θ∈Θn

√
n[(Mn −Mn)(θ)− (Mn −Mn)(θn)]

+ . φn(δ),

(4.8)
for functions φn such that δ 7→ φn(δ)/δα is decreasing on (δn, η), for some
α < 2. Let rn . δ−1

n satisfy

r2
nφn

(
1
rn

)
≤
√

n, for every n.

If the sequence θ̂n takes its values in Θn and satisfies Mn(θ̂n) ≥ Mn(θn) −
OP(r−2

n ) and dn(θ̂n, θn) converges to zero in outer probability, then rndn(θ̂n, θn) =

OP(1). If the displayed conditions are valid for η = ∞, then the condition that θ̂
is consistent is unnecessary.

Additionally the distance of the estimator sequence θ̂n to the true function
satisfies d(θ̂n, θ0) = OP(r−1

n ) + d(θn, θ0) under the conditions above. Using
small sieves Θn leads to a small modulus of continuity φn(δ) of the centered
processes

√
n(Mn − M) over Θn, and hence faster rates rn, but then the

distance of the true parameter θ0 to the sieve will be large. This relation
is reminiscent of the bias-variance trade-off, which must be balanced to
obtain an optimal rate of convergence. Intuitively, this theorem gives us
the rate at which the estimator θ̂n converges to the best∗ estimator in a
sieve θn. In a formula, it is the first term on the right hand side in the
following display,

d(θ̂n, θ0) ≤ d(θ̂n, θn) + d(θn, θ0). (4.9)
∗In the sense that it maximizes the criterion Pmn(θ).
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32 Empirical Processes and M-estimation

Thus the theorem gives us a rate of the variance, and if the bias is known,
we can compute the rate of convergence of θ̂n to θ0.

The main challenge is to derive φn(δ), the maximal inequality for the mod-
ulus of the centered processes in Equation (4.8). This involves the function
class,

Mn,δ =

{
mn,θ −mn,θ : θ ∈ Θn,

δ

2
< dn(θ, θn) ≤ δ

}
.

IfMn,δ has a measurable envelope function Mn,δ, we can use the following
result,

EP‖Gn‖Mn,δ . J[](1,Mn,δ, L2(P))(PM2
n,δ)

1/2. (4.10)

Equation (4.10) is a consequence of Theorem 2.14.2 in van der Vaart and
Wellner (1996).

32
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Chapter 5
Asymptotic Results for Parametric
CMS estimation

Following the exposition of empirical process theory, in this chapter we
demonstrate how we can apply the discussed techniques. In particular
we perform the entropy calculations, and show how one can demonstrate
consistency for M-estimators. We consider a simplistic toy model, where
the function that relates Y and βT

0 X is known. The result is a parametric
model estimation. This chapter is mostly meant for illustration purposes.
Interestingly enough, the limiting distribution and rate of convergence we
obtain coincide with the results derived in Huang and Chiang (2017).

5.1 Problem formulation

Suppose we observe iid random copies (Xi, Yi); i = 1, ..., n of (X, Y) drawn
from,

Y = g(βT
0 X) + ε, β0 = (Id0 , CT

0 )
T,

where g is a known function, and E(ε|X) = 0. Since d0 is assumed known,
we write d for simplicity. The parameter of interest is then the (p − d)d
real-valued vector vec(C0). Note that the problem setting is equivalent to
assuming g belongs to a parametric family of d-variate (regression) func-
tions. We estimate the parameter using least squares,

Ĉn = arg max
C∈R(p−d)×d

− 1
n

n

∑
i=1

(Yi − g(βTXi))
2, β = (Id, CT)T. (5.1)

In the context of M-estimation, the criterion function can be written as,

Mn(β) = Pnmβ,
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34 Asymptotic Results for Parametric CMS estimation

with loss functions mβ(X, Y) = −(Y− g(βTX))2, and β = (Id, CT)T.

5.2 Asymptotic properties

In order to demonstrate consistency of vec(Ĉn) to vec(C0), we need to
show that the class of loss functions,

M = {mβ : β = (Id, CT)T, C ∈ R(p−d)×d},

is Glivenko-Cantelli. We prove this by confirming that the function class
satisfies the requirements in Theorem 4.3. The parameter space has a one
to one transformation to the Euclidean space R(p−d)d. From Lemma 4.1
we know that the entropy number of spheres in R(p−d)d is bounded if the
coefficients are bounded. Consequently it makes sense to require that the
true parameter is contained in a sphere, i.e.

‖vec(C0)‖2 ≤ r, for some non-negative constant r. (5.2)

Additionally we assume that the function g is Lipschitz in the parameters
C, i.e. for all C1, C2 ∈ R(p−d)×d,

|g(βT
1 X)− g(βT

2 X)| ≤ K · ‖vec(C1)− vec(C2)‖2, (5.3)

for some K > 0, and β1 = (Id, CT
1 )

T, β2 = (Id, CT
2 )

T. Lastly, we require that
the true parameter can be identified, i.e.,

Pmβ0 > Pmβ, (5.4)

whenever β0 6= β. Note that this only means that the truth β0 maximizes
the loss function in expectation, and since we estimate β0 by maximizing
the empirical mean of the loss function, this assumption is reasonable.

Lemma 5.1 If conditions (5.2)-(5.4) hold, and g is a non-constant bounded func-
tion, then

‖vec(Ĉn)− vec(C0)‖2
P→ 0.

Proof. Let M = Pmβ. We show that the conditions of Theorem 4.4 hold,
starting with the uniform convergence property over the function class
M. By Theorem 4.1 it is sufficient to demonstrate that,

N[](ε,M, L1(P)) < ∞ for every ε > 0.

34

Version of February 15, 2022– Created February 15, 2022 - 14:10



5.2 Asymptotic properties 35

We calculate the bracketing number by showing that condition (4.3) holds.
Let C1, C2 be parameter matrices in R(p−d)×d, and β1 = (Id, CT

1 )
T, and

β2 = (Id, CT
2 )

T, with C1, C2 6= C0. For any X, Y drawn from our model,

|mβ2(X, Y)−mβ1(X, Y)| = |2Y(g(βT
2 X)− g(βT

1 X)) + g(βT
1 X)2 − g(βT

2 X)2|
= |(2Y− g(βT

1 X)− g(βT
2 X))(g(βT

2 X)− g(βT
1 X))|

≤ |2Y− g(βT
1 X)− g(βT

2 X)||g(βT
2 X)− g(βT

1 X)|.
We use condition (5.3) to write,

|mβ2(X, Y)−mβ1(X, Y)| ≤ K|2Y− g(βT
1 X)− g(βT

2 X)| · ‖vec(C2)− vec(C1)‖2.

In conclusion,

|mβ2(X, Y)−mβ1(X, Y)| ≤ F(X, Y) · ‖vec(C1)− vec(C2)‖2,

with
F(X, Y) = sup

β1,β2

K|2Y− g(βT
1 X)− g(βT

2 X)|.

Let Bq(u, r) denote a sphere in Rq with radius r centered at u. From Theo-
rem 4.3 it follows that,

N[](2ε‖F‖L1(P),M, L1(P)) ≤ N(ε, B(p−d)d(0, r), ‖ · ‖2).

By the assumption that E|Y| < ∞ and g is a bounded function, it follows
that

‖F‖L1(P) < ∞.

Additionally since g is non-constant, we have ‖F‖L1(P) > 0. In conclusion,
by Lemma 4.1, for any ε′ = ε

2‖F‖L1(P)
> 0,

N[](ε
′,M, L1(P)) ≤ (p− d)d log

(
r
ε′

)
< ∞. (5.5)

By Equation (5.4)

M(β0) > M(β), for all C 6= C0. (5.6)

Since β̂n = (Id, Ĉn) is chosen such that it maximizes Mn, we have,

Mn(β̂n) ≥ sup
C:β=(Id,CT)T

Mn(β)− oP(1). (5.7)

In conclusion, by Equations (5.5)-(5.7),

vec(Ĉn)
P→ vec(C0).
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36 Asymptotic Results for Parametric CMS estimation

Now that we have shown consistency of vec(Ĉn) for vec(C0), we can use
the following result to demonstrate the rate of convergence of and limiting
distribution.

Theorem 5.1 (Theorem 5.23, van der Vaart (1998)) For each θ in an open subset
of a Euclidean space let x 7→ mθ(x) be a measurable function such that θ 7→
mθ(x) is differentiable at θ0 for P-almost every x with derivative m′θ0

(x) and
such that, for every θ1 and θ2 in a neighbourhood of θ0 and a measurable function
m̃ with Pm̃2 < ∞,

|mθ1(x)−mθ2(x)| ≤ m̃(x)‖θ1 − θ2‖. (5.8)

Furthermore assume that the map θ 7→ Pmθ admits a second-order Taylor ex-
pansion at a point of maximum θ0 with nonsingular symmetric second derivative

matrix Vθ0 . If Pnm
θ̂n
≥ supθ Pnmθ − oP(n−1) and θ̂n

P→ θ0, then,

√
n(θ̂n − θ0) = −V−1

θ0

1√
n

n

∑
i=1

m′θ0
(Xi) + oP(1).

In particular the sequence
√

n(θ̂n − θ0) is asymptotically normal with mean zero
and covariance matrix V−1

θ0
Pm′θ0

m′Tθ0
V−1

θ0
.

It is fairly straight-forward to confirm that the conditions of this theorem
hold.

Theorem 5.2 If conditions (5.5)-(5.7) hold, ‖g‖L2(P) < ∞, E(ε2|X) < ∞, and
the loss function m admits a second-order Taylor expansion at vec(C0) 7→ mβ0
with nonsingular symmetric second derivative matrix, then

√
n(vec(Ĉn)− vec(C0))→ N(0, A0) as n→ ∞,

where

A0 = {Pg′(βT
0 X)⊗2}−1 · [P((Y− g(βT

0 X))g′(βT
0 X))]⊗2 · {Pg′(βT

0 X)⊗2}−1

Proof. Note that condition (5.8) has already been demonstrated to hold in
our proof of the consistency, with,

F(X, Y) = sup
β1,β2

K|2Y− g(βT
1 X)− g(βT

2 X)|.

36
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5.2 Asymptotic properties 37

The second moment of F equals,

PF2 = K2
∫
X ,Y

sup
β1,β2

|2y− g(βT
1 x)− g(βT

2 x)|2dP(x, y)

= K2
∫
X ,Y

sup
β1,β2

|4y2 − 4y(g(βT
1 x)− g(βT

2 x)) + (g(βT
1 x)− g(βT

2 x))2|dP(x, y)

≤ K2
∫
X ,Y

sup
C1,C2

4|y|2 + 4K|y| · ‖vec(C1)− vec(C2)‖2

+ 4K2‖vec(C1)− vec(C2)‖2
2dP(x, y)

≤ 4K2E(Y2) + 4K3rE|Y| ·+8K4r2,

where we used that both vec(C1), vec(C2) lie in a sphere of radius r cen-
tered around the origin, thus their distance is bound by 2r. By the assump-
tion that E(ε2|X) < ∞, it follows that E(Y2) < ∞. Thus PF2 is finite. The

estimator vec(Ĉn) is assumed to maximize Mn, vec(Ĉn)
P→ vec(C0) by

Lemma 5.1, thus the conditions of Theorem 5.1 are satisfied.

We compute,

Pm′(β) = 2P((Y− g(βTX))g′(βTX)),

Pm′′(β) = P(−2g′(βTX)⊗2 + 2(Y− g(βTX))g′′(βTX)).

By conditioning on X and using that E(Y− g(βT
0 X)|X) = E(ε|X) = 0, the

second derivative matrix at the true parameter β0 equals,

Pm′′(β0) = −2Pg′(βT
0 X)⊗2.

The covariance matrix then equals,

−1
2
{Pg′(βT

0 X)⊗2}−1 · 4P((Y− g(βT
0 X))g′(βT

0 X))⊗2 · −1
2
{Pg′(βT

0 X)⊗2}−1.

Thus we conclude that
√

n(vec(Ĉ)− vec(C0))
d→ N(0, A0).

The covariance we obtain coincides with the covariance obtained in Huang
and Chiang (2017) for the CMS estimator. Interestingly, the nonparametric
estimation of the function g does not seem to affect the performance for
large n. In the next chapter we see that this same type of invariance holds
for our estimation procedure in the setting where g is unknown.
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Chapter 6
Semiparametric Inference

In this chapter we investigate the asymptotic behaviour of our estimation
technique when the function g is unknown. We initially assume that the
dimension d0 of the column space of C0 is known, and derive a rate of con-
vergence and limiting distribution. In Section 6.6 we discuss an efficient
method to estimate the dimension d0. Models where the parameters of in-
terest are finite dimensional, and there is an infinite-dimensional nuisance
parameter present, are semiparametric models.

Due to the necessity of setting up the theoretical framework, this chapter
consists of two parts. Sections 6.1 to 6.3 consist of an exploration in semi-
parametric theory. These techniques are subsequently applied in Sections
6.4 to 6.6. Much of semiparametric theory is developed from a geometric
perspective, and therefore we opted to include a brief review of Hilbert
spaces in Section 6.1. In Section 6.2 we review semiparametric theory, in-
troduce some important notions and give general exposition. We docu-
ment the general framework and some of the approaches in semiparamet-
ric statistics. Moreover it consists of some technical detail, e.g. the intro-
duction of influence functions, score functions, and tangent sets. We only
treat these in a somewhat superficial manner, with the main goal being to
expose the reader to the ideas. In Section 6.3 we explain our approach to
prove the

√
n-consistency and asymptotic normality of our estimator, for

which we apply Theorem 1 in Ma and Kosorok (2005). To apply this result,
we need to determine the nuisance tangent space, which we discuss in some
length in Section 6.2.

In Section 6.4 we derive the nuisance tangent space of our model. In order
to prove the requirements of the result in Section 6.3, we rely heavily on
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40 Semiparametric Inference

the empirical process theory introduced in Chapter 4. In Section 6.6 we
discuss a consistent estimator for the true dimension d0. Section 6.1 and
6.2 are based on the first four chapters in Tsiatis (2006). Section 6.3 is based
on Chapter 21 in Kosorok (2008).

6.1 Geometry of Hilbert spaces

In this section we define and briefly review some basic concepts related to
the theory of Hilbert spaces. We are not including a full development of
the theory, but give a sketch of some of the ideas and notions, and state
some results without proof. By defining Hilbert spaces, we allow our-
selves to have a notion of distance, angles, and as a consequence, orthog-
onality between vectors in a linear vector space. For this, we require an
inner product.

Definition 6.1 (Inner product spaces). A vector space H is an inner product
space if there is an inner product 〈·, ·〉 : H×H → R which satisfies

1. 〈h1, h2〉 = 〈h2, h1〉 for all h1, h2 ∈ H,

2. 〈h1 + h2, h3〉 = 〈h1, h3〉+ 〈h2, h3〉 for all h1, h2, h3 ∈ H,

3. 〈ah1, h2〉 = a〈h1, h2〉 for all a ∈ R and h1, h2 ∈ H,

4. 〈h, h〉 ≥ 0 for all h ∈ H and 〈h, h〉 = 0 iff h = 0.

We say that two elements h1, h2 ∈ H are orthogonal if 〈h1, h2〉 = 0. Note that
any inner product space is a normed linear space with norm (or ”length”)
induced by the inner product, i.e. ‖ · ‖ =

√
〈·, ·〉, which is the distance

between a point and the origin in H. A normed linear space H is called
complete if every Cauchy sequence in H has a limit point in H, or equiva-
lently, every Cauchy sequence is convergent and has its limit inH.

Definition 6.2 An inner product spaceH equipped with inner product 〈·, ·〉 that
is complete with respect to the norm

√
〈·, ·〉 is a Hilbert Space.

Let U be a (non-empty) linear subspace that is closed. Theorem 2.1 (the
projection theorem) in Tsiatis (2006) shows that for every element h in H,
there exists a unique u0 ∈ U that is closest to h, i.e.

‖h− u0‖ ≤ ‖h− u‖ for all u ∈ U ,

and that 〈h− u0, u〉 = 0 for all u ∈ U . When an element (or set) is orthog-
onal to an entire set U , we say h− u0 is orthogonal to U . Then u0 is called

40
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6.1 Geometry of Hilbert spaces 41

the projection of h onto the space U , and this is denoted as u0 = Π(h|U ).

Perhaps the most notorious property (if we forget the Pythagorean the-
orem exists for a second) of Hilbert spaces is Hölder’s inequality. This will
be used extensively in Section 6.5.

Theorem 6.1 (Hölder’s inequality) If p, q ∈ [1, ∞], with 1/p + 1/q = 1, then

‖ f g‖1 ≤ ‖ f ‖p‖g‖q,

for all measurable real- or complex-valued functions f , g on a measure space. We
interpret 1/∞ as zero in this context.

For p = q = 2 we have the Cauchy-Schwartz inequality. More generally,
let r ∈ (0, ∞], and p1, ..., pn ∈ (0, ∞] such that,

n

∑
k=1

1
pk

=
1
r

.

Then, for all measurable real- or complex-valued functions f1, ..., fn,∥∥∥∥ n

∏
k=1

fk

∥∥∥∥
r
≤

n

∏
k=1
‖ fk‖pk .

An example of a Hilbert space is the space of all square-integrable func-
tions, the L2-space, which we saw previously in Chapter 3 and have used
in some entropy calculations. We give some definitions regarding opera-
tions on linear subspaces.

Definition 6.3 Let M and N be two linear subspaces in H. The direct sum
of two linear subspaces, denoted by M ⊕ N is a linear subspace in H, if every
element x ∈ M⊕ N has a unique representation of the form x = m + n, where
m ∈ M and n ∈ N.

Definition 6.4 The set of elements of a Hilbert space H that are orthogonal to a
linear subspace M is denoted by M⊥. The orthogonal complement M⊥ is also a
linear subspace and the entire Hilbert space is the direct sum of these two spaces,
i.e.

H = M⊕M⊥.

The closure of a set S is defined as the smallest closed set that contains S.
We denote this closure as S̄. This means that all the limit points of S are in
S̄. These limits are defined in terms of the metric induced by the norm,

d(h1, h2) = ‖h1 − h2‖.
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42 Semiparametric Inference

L2 spaces

In Chapter 4 we introduced the general Lr(P)-spaces. The L2(P)-space is a
Hilbert space, and it is the only value of r for which this is the case. Let the
triple (X ,A, P) be a measure space, and let F be the set of all real-valued
P-measurable functions on X . Recall that,

Lr(P) = { f ∈ F :
∫
| f (x)|rdP(x) < ∞}.

For a probability measure P this equals the class of all random variables on
the probability space (X ,A, P) that have finite r-th moment. This defines
a normed linear space over R with the following norm:

‖ f ‖Lr(P) =

( ∫
| f (x)|rdP(x)

)1/r

.

The metric induced by this norm is d( f , g) = ‖ f − g‖Lr(P). Note that this
normed linear space does not meet the uniqueness properties discussed
in the section above. For X ∈ L2(P), X = 0 has a different meaning than
usual. To retain the uniqueness of zero elements, we identify all random
variables X, Y in L2(P) that are equal on a set of measure 1 with the same
equivalence class. As such, we consider them to be representative of the
same random variable. More formally, we define ∼ as the equivalence
class such that:

f ∼ g iff f = g on X \ E, for E ⊂ X and P(E) = 0.

It is easily shown that this indeed defines an equivalence relation. The
space of equivalence classes [ f ] in L2(P) form a Hilbert space, and it is
understood that we generally mean equivalence classes when we speak
of elements in L2(P), and uniqueness of elements means uniqueness up to
equivalence classes. We can denote any of these equivalence classes with an
arbitrary element from the equivalence class, because every element has
the same integral (since they differ only on sets of measure zero).

6.2 Semiparametric Theory

6.2.1 Asymptotically linear estimators

A statistical model is a collection of probability measures,

{P ∈ P},

42
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on a sample space X . Statistical models are frequently indexed by a pa-
rameter φ ∈ Φ, for some parameter space Φ. In parametric models Φ
is finite-dimensional. Assume that {P ∈ P} is dominated by a measure
µ. Semiparametric models are statistical models where φ has one or more
infinite-dimensional components. Let X1, ..., Xn be i.i.d. instances of a ran-
dom vector X sampled from a density pX. We assume the density of X
belongs to the class,

{pX(x; φ), φ = (θ, η) ∈ Φ}.

The parameter of interest is the d-dimensional parameter θ, and the (pos-
sibly infinite-dimensional) nuisance parameter is η. An estimator θ̂n of θ is
a d-dimensional measurable function of X1, ..., Xn. Many such estimators
fall under the class of asymptotically linear estimators.

Definition 6.1 An estimator θ̂n of θ, for θ ∈ Rd is asymptotically linear if there
exists a function ψ : X → Rd such that Eψ = 0, and

√
n(θ̂n − θ0) =

√
n

n

∑
i=1

ψ(Xi) + oP(1),

and E(ψψT) is finite and nonsingular.

Here Eψ and E(ψψT) are defined w.r.t. to the distribution of X. The ran-
dom vector ψ(Xi) is the i-th influence function of the estimator θ̂n - and as
the name suggests, it is the influence of the i-th observation on the estima-
tor θ̂n. The following example is due to Tsiatis (2006).

Example 1 (Tsiatis (2006), Example 1) Suppose X1, ...Xn
iid∼ N(µ, σ2). The

MLE for µ and σ2 are given by

µ̂n =
1
n

n

∑
i=1

Xi, and

σ̂n =
1
n

n

∑
i=1

(Xi − µ̂n)
2.

The estimator µ̂n is asymptotically linear with ψ(Xi) = (Xi − µ0), since

√
n(µ̂n − µ0) =

√
n

n

∑
i=1

(Xi − µ0).
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We can express the estimator for the variance as,

√
n(σ̂2

n − σ2
0 ) =

1√
n

n

∑
i=1

[
(Xi − µ0)

2 − σ2
0

]
+
√

n(µ̂n − µ0)
2.

Since
√

n(µ̂n − µ0) converges to a normal distribution with mean zero, and fur-
thermore µ̂n− µ0 converges in probability to zero, it follows that n1/2(µ̂n− µ0)

2

converges in probability to zero. The influence function here equals ψ(Xi) =
((Xi − µ0)

2 − σ2
0 ).

By the CLT we have,

n−1/2
n

∑
i=1

ψ(Xi)
D→ N(0, E(ψψT)),

and by Slutsky’s Theorem,

√
n(θ̂n − θ0)

D→ N(0, E(ψψT)).

Consequently, when studying asymptotic properties of θ̂n, it suffices to
consider the influence function of θ̂n. As demonstrated in Theorem 3.1
in Tsiatis (2006), an asymptotically linear estimator almost surely has a
unique influence function.

6.2.2 Superefficient estimators

The variance of any unbiased estimator θ̂n of θ must be greater than or
equal to the Cràmer-Rao lower bound, which is defined as the inverse of the
Fisher information, i.e.

varθ(θ̂n) ≥
1
n

I(θ)−1,

where the Fisher information I(θ) is defined as,

I(θ) = Eθ

(
∂l(x; θ)

∂θ2

)2

.

Here l is the natural logarithm of the likelihood function for a single ob-
servation x, i.e. l(x; θ) = ln pX(x; θ). The efficiency of an unbiased esti-
mator θ̂n measures how close θ̂n comes to this lower bound. Most reason-
able estimators of finite-dimensional parameters are asymptotically unbi-
ased. Estimators whose asymptotic variance equals the Cràmer-Rao lower

44
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bound are asymptotically efficient. The maximum likelihood estimator un-
der certain regularity assumptions is an example of an efficient estimator
for parametric models. Interestingly enough, in 1951 Hodges produced a
super-efficient estimator: an estimator that has asymptotic variance equal to
the Cràmer-Rao lower bound for most of the parameter values, but smaller
variance than the Cràmer-Rao lower bound for the other parameters. Be-
cause super-efficient estimators have undesirable local properties, certain
regularity conditions are imposed on our class of estimators.

Definition 6.2 Consider a local data generating process, where for each n, the
data X1, ..., Xn are distributed according to φn = (θT

n , ηT
n )

T, where
√

n(φn− φ∗)
converges to a constant. An estimator θ̂n is said to be regular if for each φ∗,√

n(θ̂n − θn) has a limiting distribution that does not depend on the local data
generating process.

We limit our scope to estimators that are regular and asymptotically lin-
ear (RAL). Additionally we consider parametric models (i.e. φ is finite
dimensional, and as a consequence so are θ and η) in our treatise of the
geometry of influence functions for RAL estimators. These ideas are then
generalized to semiparametric models.

6.2.3 Score Functions and Tangent Sets

The score vector Sφ : X → Rp for a single observation X in a parametric
model is defined as the derivative of the log-likelihood with respect to the
elements of φ,

Sφ(x; φ0) =
∂ log pX(x; φ)

∂φ

∣∣∣∣
φ=φ0

.

We can partition this vector of derivatives as

Sφ(X; φ0) = (ST
θ (X, φ0), ST

η (X, φ0))
T.

The score vector has mean zero under suitable regularity conditions. We
now have the necessary background to define tangent spaces. Let H de-
note the Hilbert space of all q-dimensional measurable functions of X with
mean zero and finite variance, equipped with the covariance inner prod-
uct, 〈h1, h2〉 = E(hT

1 h2). We define Λ ⊂ H as the linear subspace spanned
by the score vector Sφ(X, φ0) as the set of all q-dimensional mean-zero ran-
dom vectors consisting of

Bq×pSφ(X, φ0)
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for all q× p matrices B. The linear subset Λ is called the tangent space. In
particular consider the linear subspace Λη spanned by the nuisance score
vector Bq×rSη(X, φ0) for all q × r matrices B∗. This is the nuisance tan-
gent space. The following corollary demonstrates two important proper-
ties of the relationship between influence functions and the tangent space.
Namely, the inner product of the influence function and the tangent space
spanned by the score vector Sθ has expectation 1, and the influence func-
tion ψ

θ̂n
(X) for θ̂n is orthogonal to the nuisance tangent space Λη (i.e.

ψ ∈ Λ⊥η ). Additionally it gives the existence of a RAL estimator for ev-
ery θ with that influence function. Although the proof is constructive of
nature, since it demonstrates how to construct estimators that have influ-
ence functions corresponding to elements in the subspace of the Hilbert
space satisfying the conditions below, we chose to omit it since it serves
no purpose in our proofs. Finding a function that satisfies the conditions
below, requires knowledge of the ”truth” φ0, which we typically lack. For
more detail we refer the interested reader to Section 3.3 in Tsiatis (2006).

Corollary 6.1.1 All RAL estimators have influence functions that belong to the
subspace of our Hilbert space satisfying,

• E[ψ(X)ST
θ (X, φ0)] = Iq;

• E[ψ(X)ST
η (X, φ0)] = 0.

and, conversely, any element in the subspace above is the influence function of
some RAL estimator.

Since RAL estimators are asymptotically normal, we can compare com-
peting RAL estimators for θ by looking at the asymptotic variance. The
asymptotic variance of a RAL estimator, in turn, is equal to the variance of
its influence function. Therefore, it is sufficient to consider the variance of
influence functions. The influence functions can be viewed as elements in
a subspace of a Hilbert space, and the distance to the origin is the variance
of the element. As a result, comparing competing estimators is equivalent
to comparing elements in the subspace of the influence functions that have
the smallest norms. Additionally the influence functions are orthogonal to
the nuisance tangent space Λη. Therefore the space of influence functions
is given by h−Π(h|Λη) for all h ∈ H, and

Π(h|Λ) = E(hST
η )E(SηST

η )
−1Sη(X, φ0),

∗Where Sη : X → Rr.

46
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and the tangent space Λ = {Bq×pSφ(X, φ0) for all Bq×p} can be written as
the direct sum of the nuisance tangent space and the tangent space gener-
ated by the score function w.r.t. θ, i.e.

Λ = Λθ ⊕Λη.

The efficient influence function ψeff(·) is the influence function with the small-
est variance. Theorem 3.5 in Tsiatis (2006) proves that such an influence
function exists, and is given by,

ψeff(X) = Π
(

ψ∗(X)

∣∣∣∣Λ),

where ψ∗(X) is an arbitrary influence function.

6.2.4 Semiparametric Efficiency

We now have sufficient tools to extend the theory to the semiparamet-
ric case. The techniques demonstrated above are generalized in a typical
mathematical fashion, by taking limits to infinity. Let P denote the class
of densities parametrized by φ = (θ, η), where θ is d-dimensional and η
is infinite-dimensional. Let p0(x) = p(x; (θ0, η0)) denote the true density.
We first consider parametric submodels, denoted by the class of densities
Pθ,γ with the following properties:

• (θT, γT)T is a (d + r)-dimensional parameter. The value of the di-
mension of γ depends on the choice of parametric submodel.

• Every density in Pθ,γ belongs to the semiparametric model P , i.e.
Pθ,γ ⊂ P .

• The parametric submodel contains the true density, i.e. p0(·) ∈ Pθ,γ.

The third requirement implies that these models are only conceptual, and
not instructive, since otherwise we require knowledge of the ”truth”. Our
characterization of influence functions, and efficient influence functions,
and RAL estimators for a parametric model obviously apply to parametric
submodels. Consequently, the following properties hold:

1. Influence functions of RAL estimators for θ for a parametric sub-
model belong to the subspace of the Hilbert spaceH of q-dimensional,
mean-zero and finite-variance, measurable functions (equipped with
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the covariance inner product) that are orthogonal to the parametric
submodel nuisance tangent space. The latter is given by,

Λγ = {Bq×rSγ(X, Y, θ0, γ0), for all Bq×r},

and

Sγ =
∂ log p(x, y, θ0, γ0)

∂γ
.

2. The efficient influence function for the parametric submodel is given
by

φeff
θ,γ(X, Y) = (E(Seff

θ,γSeffT

θ,γ ))−1Seff
θ,γ(X, Y, θ0, γ0),

where

Seff
θ,γ(X, Y, θ0, γ0) = Sθ(X, Y, θ0, η0)−Π(Sθ(X, Y, θ0, η0)|Λγ), and

Sθ(X, Y, θ0, η0) =
∂ log p(x, y, θ0, η0)

∂θ
.

3. The smallest asymptotic variance among RAL estimators for θ for a
parametric submodel is

(E(Seff
θ,γSeffT

θ,γ ))−1.

An estimator for θ is an RAL estimator for a semiparametric model if it is
an RAL estimator for every parametric submodel. Consequently, every in-
fluence function of an RAL estimator in a semiparametric model, must be
an influence function of an RAL estimator within a parametric submodel.
That is, if θ̂n is a semiparametric estimator and,

√
n(θ̂n − θ)

D→ N(0, Σ(β, η))

for all p(x; θ, η) ∈ P , then,

√
n(θ̂n − θ)

D→ N(0, Σ(β, γ))

for all p(x; θ, γ) ∈ Pθ,γ ⊂ P . This allows us to characterize the influence
functions of an RAL semiparametric estimator for θ as orthogonal to all
parametric submodel nuisance tangent spaces. Furthermore, the variance
of any RAL semiparametric influence functions must be greater than or
equal to

(E(Seff
θ,γSeffT

θ,γ ))−1

48
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for all parametric submodels Pθ,γ. This bound is called the semiparametric
efficiency bound, and Theorem 6.2 emphasizes that it is reminiscent of the
parametric efficiency (Cràmer-Rao) bound.

The nuisance tangent space for a semiparametric model, also denoted by Λη,
is defined as the mean-square closure (i.e. the closure where the limits are
taken w.r.t. the metric induced by the mean-square inner product) of para-
metric submodel tangent spaces. A parametric submodel nuisance tangent
space is the set of elements,

{Bq×rSr×1
γ (X, θ0, η0)}.

The mean-square closure of the spaces above is defined as the space Λη ⊂ H,
for

Λη = {hq×1(X) ∈ H such that E(hTh) < ∞, and there exists a sequence

BjSγj(X) such that ‖h− BjSγj‖2 j→∞→ 0, for a sequence of parametric
submodels indexed by j},

where ‖h‖2 = E(hTh). We assume that Λη is a closed linear subspace,
so that projections exist. To characterize the influence functions for semi-
parametric RAL estimators for θ, we need to define the semiparametric
efficient score.

Definition 6.3 The semiparametric efficient score for θ is defined as,

Seff(X, θ0, η0) = Sθ(X, θ0, η0)−Π(Sθ(X, θ0, η0)|Λη).

Theorem 6.2 The semiparametric efficiency bound is equal to the inverse of the
variance matrix of the semiparametric efficient score, i.e.

(E(SeffST
eff))

−1.

The efficient influence function is defined as the influence function of a semi-
parametric RAL estimator that achieves the semiparametric efficiency bound.
We formulate the semiparametric analogue of Corollary 6.1.1, so that we
can characterize the efficient influence function as the unique element sat-
isfying the conditions below, whose variance matrix equals the efficiency
bound, and

ψeff(X, θ0, η0) = (E(SeffST
eff))

−1Seff(X, θ0, η0).
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50 Semiparametric Inference

Theorem 6.3 Any semiparametric RAL estimator for θ must have an influence
function ψ(X) that satisfies

• E(ψ(X)ST
θ (X, θ0, η0)) = E(ψ(X)ST

eff(X, θ0, η0)) = Iq.

• The influence function ψ(X) is orthogonal to the nuisance tangent space,
Π(ψ(X)|Λη) = 0.

In summary, the approach in semiparametric statistics is to construct es-
timators through deriving influence functions. We treat these influence
functions as normalized elements in the orthogonal complement of a nui-
sance tangent set Λη. Therefore our problem reduces to deriving the or-
thogonal complement Λ⊥η . Although our estimation method does not rely
on this paradigm, we derive the nuisance tangent space in order to prove
certain asymptotic results in Section 6.4.

50
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6.3 Semiparametric M-estimation

Assume that X1, ..., Xn are drawn from Pθ,η, where θ ∈ Rd and η ∈ H.
Suppose that the infinite dimensional space H has norm ‖ · ‖ and the true
parameter is θ0, η0. For any fixed η ∈ H, let η1(t), η2(t) be smooth curves
running through η at t = 0. Let h1, h2 be elements in the tangent set Λη.
For simplicity, we write the loss functions m(θ, η; X, Y) as m(θ, η). Denote
the derivatives as,

m1(θ, η) =
∂

∂θ
m(θ, η), and m2(θ, η)[h1] =

∂

∂t

∣∣∣∣
t=0

m(θ, η1(t)),

Furthermore denote the set of second derivatives as,

m11(θ, η) =
∂

∂θ
m1(θ, η), m12(θ, η)[h1] =

∂

∂t

∣∣∣∣
t=0

m1(θ, η1(t))

m21(θ, η)[h1] =
∂

∂θ
m2(θ, η)[h1], m22(θ, η)[h1][h2] =

∂

∂t

∣∣∣∣
t=0

m2(θ, η2(t))[h1],

For vectors H = (h1, ..., hd) ∈ Λd
η we use the shorthand notation

m2(θ, η)[H] = (m2(θ, η)[h1], ..., m2(θ, η)[hd]).

Assume there exists H∗ = (h∗1 , ..., h∗d) ∈ Λd
η such that for any H ∈ Λd

η we
have,

P(m12(θ0, η0)[H]−m22(θ0, η0)[H∗, H]) = 0. (6.1)

Then let m̃(θ, η) ≡ m1(θ, η) − m2(θ, η)[H∗]. Suppose that our estimator
(θ̂n, η̂n) satisfies the following near-maximization criterion,

Pnm̃(θ̂n, η̂n) = oP(n−1/2). (6.2)

The following conditions are sufficient for such θ̂n to be asymptotically
normal, and

√
n consistent. We slightly strengthen condition A1 from

Kosorok (2005). Whereas the original result requires mere consistency of
the finite-dimensional θ̂n to θ0, we require a rate of convergence. By doing
this, we can weaken the original stochastic equicontinuity condition (A3)
by considering the supremum over all θ such that |θ − θ0| ≤ δn = Cn−c1

for some constant C > 0, instead of arbitrary sequences δn ↓ 0. The proof
is analogous to Theorem 1 in Kosorok (2005).
A1: (Consistency and rate of convergence) Assume

|θ̂n − θ0| = OP(n−c1), and ‖η̂n − η0‖ = OP(n−c1),
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for some c1 > 0.
A2: (Finite variance) 0 < det(I∗) < ∞, where

I∗ = {P(m11(θ0, η0)−m21(θ0, η0)[H∗])}−1

× P[m1(θ0, η0)−m2(θ0, η0)[H∗]]⊗2

× {P(m11(θ0, η0)−m21(θ0, η0)[H∗]}−1.

A3: (Stochastic equicontinuity) For any C > 0,

sup
|θ−θ0|≤Cn−c1 ,‖η−η0‖≤Cn−c1

|
√

n(Pn − P)(m̃(θ, η)− m̃(θ0, η0))| = oP(1).

A4: (Smoothness of the model) For some c2 > 1 satisfying c1c2 > 1/2 and
for all (θ, η) satisfying {(θ, η) : |θ − θ0| ≤ δn, ‖η − η0‖ ≤ Cn−c1},∣∣∣∣P{(m̃(θ, η)− m̃(θ0, η0))− (m11(θ0, η0)−m21(θ0, η0)[H∗])(θ − θ0)

−
(

m12(θ0, η0)

[
η − η0

‖η − η0‖

]
−m22(θ0, η0)[H∗]

[
η − η0

‖η − η0‖

])
‖η − η0‖

}∣∣∣∣
= o(|θ − θ0|) + O(‖η − η0‖c2).

Theorem 6.4 (Theorem 1, Kosorok (2005)) Suppose that (θ̂n, η̂n) satisfies Equa-
tion (6.2), and that Conditions A1-A4 hold, then

√
n(θ̂n − θ0) = −

√
n{P(m11(θ0, η0)−m21(θ0, η0)[H∗])}−1

×Pn(m1(θ0, η0)−m2(θ0, η0)[H∗]) + oP(1).

Hence
√

n(θ̂n − θ0) is asymptotically normal with mean zero and variance I∗.

We briefly discuss how this result can be applied to our estimator. To find
H∗ ∈ Λd

g that satisfies Equation (6.1) we need to know what the nuisance
tangent space looks like. We derive this space in the next section. For
condition A1 we require a rate of convergence of (Ĉn, ĝn) to (C0, g0). We
initially show that (Ĉn, ĝn) is consistent for (C0, g0). Both results these can
be shown by performing entropy calculations and using the results for M-
estimation we discussed in Section 4.3. Assumption A2 is a condition that
ensures that the limiting distribution of

√
n(vec(Ĉn) − vec(C0)) is non-

degenerate. To demonstrate condition A3, we use maximal inequalities
and entropy calculations. The last condition A4 can be verified to hold by
using Taylor expansions for functionals, and resembles a typical smooth-
ness condition.

52
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6.4 Semiparametric estimation in the SDR model

Suppose we observe i.i.d. copies (Xi, Yi) of a random vector X ∈ Rp and
response Y ∈ R, drawn from the following model,

Y = g0(βT
0 X) + ε, where β0 = (Id0 , CT

0 )
T,

with E(ε|X) = 0. The parameters are the unknown function g0 and the
(p− d0)× d0 parameter matrix C0. Since d0 is assumed to be known, we
write d for simplicity in the remainder of this section. As we discussed
in Chapter 2, we estimate g0 with a B-spline, in contrast to the kernel ap-
proach used in Huang and Chiang (2017).

6.4.1 Tangent Spaces

This derivation is heavily inspired by the examples in Chapter 4 of Tsi-
atis (2006). We assume that Y is continuous and (X, Y) has dominating
measure νX × lY. The density of one observation (X, Y) belongs to the
semi-parametric model,

P = {p(x, y; β, g)},

defined with respect to the dominating measure νX × lY. We denote the
true density as p0(x, y) = p(x, y; β0, g0). Since there is a one-to-one trans-
formation between (X, Y) and (X, Y − g(βTX)) = (X, ε), we can express
the density as,

pX,Y(x, y) = pX,ε(x, y− g(βTx)) = pX,ε(x, ε).

In turn, this expression can be written as,

pX,ε(x, ε) = η1(x)η2(x, ε),

where η1(x) = pX(x) is any non-negative function of x such that,∫
η1(x)dν(x) = 1, (6.3)

and η2(x, ε) = pε|X(ε|x) is any non-negative function such that,∫
η2(x, ε)dε = 1 for all x, (6.4)

∫
εη2(x, ε)dε = 0 for all x. (6.5)
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The non-negativity and constraints in Equation (6.3)-(6.5) are used to char-
acterize elements in our semi-parametric model P as,

p(x, y; β, η1(·), η2(·)) = η1(x)η2(x, y− g(βTx)).

The true density is denoted by

p0(x, y) = η0
1(x)η0

2(x, y− g0(βT
0 x)).

We view η1, η2, and g as nuisance parameters. To derive the semiparamet-
ric nuisance tangent space, we consider parametric submodels,

pX(x, γ1), pε|X(y− g(βT
0 x; γg)|x, γ2), g(βT

0 x; γg),

where γ1, γ2, γg are vectors of dimension r1, r2, rg respectively. Thus γ =

(γT
1 , γT

2 , γT
g )

T is an r-dimensional vector, for r = r1 + r2 + rg. This para-
metric submodel is given by,

Pγ = {p(x, y; γ1, γ2, γg) = pX(x, γ1)pε|X(y− g(βT
0 x; γg)|x, γ2),

for (γT
1 , γT

2 , γT
g )

T ⊂ Rr}.

Note that Pγ must contain the truth p0(x, y) to be a parametric submodel,
which we denote as,

p0(x, y) = pX(x, γ0
1)pε|X(y− g(βTx; γ0

g)|x, γ0
2).

The parametric submodel nuisance score vector is given by

Sγ(x, y; β0, γ0) =

{(
∂ log p(x, y; β0, γ)

∂γ1

)T

,
(

∂ log p(x, y; β0, γ)

∂γ2

)T

,(
∂ log p(x, y; β0, γ)

∂γg

)T}T∣∣∣∣
γ=γ0

= {ST
γ1
(x, y; β0, γ0

1), ST
γ2
(x, y; β0, γ0

2), ST
γg(x, y; β0, γ0

g)}T.

Since,

log p(x, y; β, γ) = log pX(x, γ1) + log pε|X(y− g(βTx; γg)|x, γ2),

54
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we obtain for the score functions evaluated at the true parameters,

Sγ1(x, y; β0, γ0) =
∂ log pX(x, γ0

1)

∂γ1

Sγ2(x, y; β0, γ0) =
∂ log pε|X(y− g(βT

0 x; γ0
g)|x, γ0

2)

∂γ2

Sγg(x, y; β0, γ0) =
∂ log pε|X(Y− g(βT

0 x; γ0
g)|x, γ0

2)

∂γg

=
∂ log pε|X(y− g0(βT

0 x; γ0
g)|x, γ0

2)

∂ε
·

∂(y− g0(βT
0 x; γ0

g))

dγg

= −
p′

ε|X(ε|x, γ0
2)

pε|X(ε|x, γ0
2)
· ∂ε

dγg
,

where ε = y− g(βT
0 x). Note that we can write the score functions w.r.t. γ2

and γg as Sγ2(x, ε) and Sγg(x, ε) due to the one-to-one transformation of
(X, Y) to (X, ε). An element in the parametric submodel nuisance tangent
space is given by

Bq×rSγ(X, ε) = Bq×r1
1 Sγ1(X) + Bq×r2

2 Sγ2(X, ε) + Bq×rg
g Sγg(X, ε),

for matrices of constants Bq×r1 , Bq×r2 , Bq×rg . The parametric submodel nui-
sance tangent space,

Λγ = {Bq×rSγ(X, ε), for all Bq×r},

can thus be written as

Λγ = Λγ1 + Λγ2 + Λγg ,

where

Λγ1 = {B
q×r1
1 Sγ1(X) for all Bq×r1},

Λγ2 = {B
q×r2
1 Sγ2(X, ε) for all Bq×r2},

Λγg = {B
q×rm
1 Sγm(X, ε) for all Bq×rg}.

The semiparametric nuisance tangent space is the mean-square closure of
all parametric submodel nuisance tangent spaces, i.e. the mean square
closure of Λγ. If γ1, γ2, and γg are variationally independent, (i.e. proper
densities in the parametric submodel can be defined by considering any
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combination of γ1, γ2, and γg), this would imply that the mean-square
closure of the ”sum” of Λγ1 , Λγ2 , and Λγg , is the ”sum” of of the mean
square closures of Λγ1 , Λγ2 , and Λγg . This would imply that,

Λ = Λ1s + Λ2s + Λgs,

where

Λ1s = {mean square closure of all Λγ1}
Λ2s = {mean square closure of all Λγ2}
Λgs = {mean square closure of all Λγg}.

Ma and Zhu (2014) contain the explicit form of the tangent space, however
there is no derivation present. We explicitly derive each of these spaces to
familiarize the reader with techniques from the semiparametric paradigm.
In many cases the structure of the parametric submodel nuisance tangent
space allows us to make an educated guess for the semiparametric nui-
sance tangent space. We still need to verify our guess, which we do in
Theorem 6.5.

Theorem 6.5 The following equalities hold:

1.

Λ1s = { f (x) : all functions f such that E f = 0 and E f 2 < ∞}.

2.

Λ2s = { f (x, ε) : all functions f such that

E( f |X) = 0 and E( f (X, ε)εT|X) = 0}.

3.

Λgs =

{ ∂
∂ε η0

2(x, ε)

η0
2(x, ε)

f (βT
0 X) : for all functions f

}
.

Proof. The proof is split in three parts, one for each of the nuisance param-
eters. We also explain how we arrived at our guess, and how we can prove
the guess.
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6.4 Semiparametric estimation in the SDR model 57

The space Λ1s

Intuition: For any parametric submodel we have Sγ1(X, Y) = Sγ1(X), and
every score function has mean zero under certain regularity assumptions,
i.e.

E(Sγ1(X)) = 0. (6.6)

This suggests that we want to consider the semiparametric nuisance tan-
gent space for η1 to be all functions of X that satisfy equation (6.6). Denote
this space as S1. We need to prove following two statements:

1. Any element of Λγ1 , for any parametric submodel indexed by γ1,
belongs to S1.

2. Any element of S1 is an element of Λγ1 for a parametric submodel or
a limit of such elements.

Observe that (1) is satisfied because

E(Bq×r1Sγ1(X)) = 0, for all constant matrices Bq×r1 .

To demonstrate the second statement, consider any bounded function f ∈
S1. Consider the parametric submodel with density pX(x, γ1) = p0(x){1+
γT

1 f (x)}, where γ1 is a q−dimensional vector, and sufficiently small such
that,

1 + γT
1 f (X) ≥ 0.

This enforces pX(x, γ1) to be a proper density in a neighbourhood of γ1
around zero. Since pX(x, γ1) ≥ 0 for all x, and∫

pX(x, γ1)dν(x) =
∫

p0(x){1 + γT
1 f (x)}dν(x)

=
∫

p0(x)dν(x) +
∫

γT
1 f (x)p0(x)dν(x)

= 1 + 0 = 1.

The second term in the second-to-last equality follows from the fact that

0 = E( f (X)) =
∫

f (x)dP(x) =
∫

f (x)p0(x)dν(x).

The corresponding score vector is

Sγ1(X) =
∂ log(p0(X){1 + γT

1 f (X)})
∂γ1

∣∣∣∣
γ1=0

=
p0(X) f (X)

p0(X) + γT
1 f (X)p0(X)

∣∣∣∣
γ1=0

= f (X).

Version of February 15, 2022– Created February 15, 2022 - 14:10

57



58 Semiparametric Inference

Since the parametric submodel nuisance tangent space consists of Bq×qSγ1

for all matrices B, we can just set Bq×q = Iq. This implies that f (X) is an el-
ement of the parametric submodel nuisance tangent space we constructed
above. If f (X) is not bounded, it can be taken as the limit of bounded
mean-zero functions of X. We conclude that all elements of S1 are either
elements parametric submodel nuisance tangent space or a limit of such
elements. This proves that Λ1s = S1.

The space Λ2s

Intuition: Recall that ε = y− g(βT
0 x). Since

∫
pε|X(y− g(βT

0 x; γg)|x, γ2)dε =
1 for all x, γ2, γg, we have,

∂

∂γ2

∫
pε|X(y− g(βT

0 x; γg)|x, γ2)dε = 0.

If we swap the integral and derivative, and multiply with 1, we obtain

0 =
∫ ∂pε|X(y− g(βT

0 x; γg)|x, γ2)

∂γ2
·

pε|X(y− g(βT
0 x; γ0

g)|x, γ0
2)

pε|X(y− g(βT
0 x; γ0

g)|x, γ0
2)

dε

=
∫ ∂pε|X(y−g(βT

0 x;γg)|x,γ2)

∂γ2

pε|X(y− g(βT
0 x; γ0

g)|x, γ0
2)

dP(ε|x).

This implies E(Sγ2(X, ε)|X) = 0. Additionally,

0 = E(ε|X)

=
∫

pε|X(ε|x, γ2)ε dε.

By differentiating w.r.t. γ2 and multiplying by 1 we obtain,

∫ ∂pε|X(y− g(βT
0 x; γ0

g)|x, γ2)ε

∂γ2
·

pε|X(y− g(βT
0 x; γ0

g)|x, γ0
2)

pε|X(y− g(βTx; γ0
g)|x, γ0

2)
dε

=
∫

Sγ1(x, ε)εpε|X(y− g(βTx; γ0
g)|x, γ0

2) dε

= E(Sγ2(x, ε)ε|X)

= 0.

Therefore any element f of a parametric submodel nuisance tangent space
must satisfy:

E( f (X, ε)|X) = 0, (6.7)
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E( f (X, ε)ε|X) = 0. (6.8)

We conjecture that Λ2s equals the space of all functions that satisfy equa-
tion (6.7) & (6.8). Denote this space as S2. Let f (X, ε) be a bounded func-
tion in S2, and let γ2 be a q-dimensional parameter sufficiently small so
that:

1 + γT
2 f (x, ε) ≥ 0 for all x, ε.

Consider the parametric submodel

pε|X(y− g(βT
0 x; γg)|x, γ2) = p0

ε(ε|x){1 + γT
2 f (x, ε)}.

Note that∫
pε|X(y− g(βT

0 x; γ0
g)|x, γ2)dε = 1 for all x, γ2, γg,

and
E(ε|X) = 0.

The score vector of this parametric submodel is

Sγ2(x, ε) =
∂ log pε|X(y− g(βT

0 x; γ0
g)|x, γ0

2)

∂γ2

∣∣∣∣
γ2=0

=
∂ log(p0

ε|X(ε|x){1 + γT
2 f (x, ε)})

∂γ2

∣∣∣∣
γ2=0

=
p0

ε|X(ε|x) f (x, ε)

p0
ε|X(ε, x){1 + γT

2 f (x, ε)}

∣∣∣∣
γ2=0

= f (x, ε).

Choosing Bq×q = Iq, similarly to the investigation of Λ1s, allows us to
conclude that f (x, ε) is an element of this parametric nuisance tangent
space. Hence any bounded element f (x, ε) satisfying (6.7) and (6.8) can
be obtained. Additionally any unbounded element can be obtained as a
sequence of bounded f (x, ε) satisfying (6.7) and (6.8). Since our function
space is closed, this limit is also included in Λ2s. We conclude that Λ2s =
S2.

The space Λgs

Intuition: There are no restrictions on the function g, so we entirely base
our guess off the score vector. We know that any element in Λγg , say
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f (X, ε) for any parametric submodel must be of the form

Bq×rg ×
p′

ε|X(y− g(βT
0 x; γg)|x, γ0

2)

pε|X(y− g(βT
0 x; γg)|x, γ0

2)

∂g(βT
0 X; γg)

∂γg
. (6.9)

We conjecture that Λgs is equal to:

Sg =

{ ∂
∂ε p0

ε|X(ε|x, γ0
2)

p0
ε|X(ε|x, γ0

2)
· f (βT

0 X) for all functions f
}

. (6.10)

Let f (βT
0 x) be a bounded function in Sg. Consider the parametric sub-

model,
g(βT

0 x; γg) = g0(βT
0 x)− γT

g f (βT
0 X). (6.11)

By setting γg = 0, we see that the ”truth” is contained in this parametric
submodel.
The score function of this parametric submodel is then given by,

Sγg(x, ε) =
∂ log pX(x; γ0

1)pε|X(y− g(βT
0 x; γg)|x, γ0

2)

∂γg

∣∣∣∣
γg=0

=
∂ log pε|X(y− g(βT

0 x; γg)|x, γ0
2)

∂ε
·

∂(y− g(βT
0 x; γg))

∂γg

∣∣∣∣
γg=0

=
∂
∂ε pε|X(y− g(βT

0 x; γg))

pε|X(y− g(βT
0 x; γg))

· −
∂(g0(βT

0 x)− γT
g f (βT

0 X))

∂γg

∣∣∣∣
γg=0

=
∂
∂ε pε|X(y− g0(βT

0 x))

pε|X(y− g0(βT
0 x))

· f (βT
0 X)

Choosing Bq×q = Iq allows us to conclude that f (βT
0 X) is an element of this

parametric nuisance tangent space. Hence any bounded function f (βT
0 X)

in Sg can be obtained from a parametric nuisance tangent space. Addi-
tionally, unbounded functions can be obtained as a sequence of bounded
f (βT

0 X) that are in a parametric nuisance tangent space. Since our func-
tion space is closed, this limit is also included in Λgs. We conclude that
Λgs = Sg.
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6.4 Semiparametric estimation in the SDR model 61

6.4.2 Notation

Let C be a (p− d)× d real-valued matrix, and define the loss-functions as,

mβ,g(X, Y) = −(Y− g(βTX))2; where β = (Id, CT)T.

Corresponding to the notation in Section 6.3, we have,

∂1mβ,g(X, Y) = −2(Y− g(βTX))g′(βTX)

∂2mβ,g(X, Y)[h] = −2(Y− g(βTX))h

∂11mβ,g(X, Y) = 2g′(βTX)⊗2 − 2(Y− g(βTX))g′′(βTX)

∂12mβ,g(X, Y)[h] = 2hg′(βTX)

∂21mβ,g(X, Y)[h] = 2g′(βTX)h

∂22mβ,g(X, Y)[h1, h2] = 2h2h1.

Lemma 6.1 The vector of all zeros, H∗ = 0 satisfies Equation (6.1).

Proof. By Theorem 6.5 we have that for H ∈ Λgs,

P∂12mβ0,g0 [H] = 2P
( ∂

∂ε p(ε|X)

p(ε|X)
h(βT

0 X)g′0(βT
0 X)

)
,

for some arbitrary function h. By the law of total expectation we have,

E
( ∂

∂ε p(ε|X)

p(ε|X)
h(βT

0 X)g′0(βT
0 X)

)
= E

[
E
( ∂

∂ε p(ε|X)

p(ε|X)
h(βT

0 X)g′0(βT
0 X)

∣∣∣∣X)]
= E

[
E
( ∂

∂ε p(ε|X)

p(ε|X)

∣∣∣∣X)h(βT
0 X)g′0(βT

0 X)

]
.

The inner expectation can be computed as,

E
( ∂

∂ε p(ε|x)
p(ε|x)

∣∣∣∣X) =
∫ ∞

−∞

∂
∂ε p(ε|x)
p(ε|x) p(ε|x)dε

= p(ε|x)
∣∣∣∣∞
ε=−∞

= 0.

Thus for H∗ = 0,

P(∂12mβ0,g0 [H]− ∂22mβ0,g0 [H
∗, H]) = 0, ∀H ∈ Λd

gs, (6.12)
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As a consequence,

m̃β,g(X, Y) = ∂1mβ,g(X, Y)− ∂2mβ,g(X, Y)[H∗]

= −2(Y− g(βTX))g′(βTX).
(6.13)
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6.5 Asymptotic results for the Central Mean Subspace estimation 63

6.5 Asymptotic results for the Central Mean Sub-
space estimation

We prove
√

n-consistency and asymptotic normality of the estimator of the
central mean subspace by demonstrating that the conditions of Theorem
6.4 hold. To prove condition A1 of Theorem 6.4, we first show consistency
of (Ĉn, ĝn) for (C0, g0). We then prove a rate of convergence of the mul-
tivariate B-spline estimator ĝn to g0 and the parameter matrix Ĉn to C0.
These are shown below in Theorem 6.6, and 6.7 respectively. We require
stochastic equicontinuity for A3, and this is demonstrated in Lemma 6.5.
All three results rely on entropy calculations. As such, our proofs heavily
rely on the empirical process theory discussed in Chapter 4. Assumption
A4 is shown to hold by using appropriate Taylor expansions for Pm̃β,g at
(β0, g0).

6.5.1 Technicalities and Model Assumptions

Let X and Y denote the domain of X and Y respectively. We remind
the reader that we assume that the function g0 has 4 continuous (partial)
derivatives, and that we estimate g0 with a B-spline of degree 3. The im-
plications of these two properties are discussed later on in this section.
For a given β, we compute the B-spline basis functions using the Cox-de-
Boor recursion formula discussed in Chapter 2. The coefficients are then
estimated by Equation (2.7). In the remainder of this section, we use the
product form introduced in Equation (2.3) to write a B-spline function g,
i.e.,

g(βTX) = ψ(βTX)Ta,

where ψ(βTX) is the vectorized tensor product basis, and a is the vector-
ized coefficient matrix. We denote the ”best” B-spline function with qd

n
knots as,

gn(βTX) = ψ(βTX)Tan.

We can think of gn as the B-spline function with qd
n knots that lies ”closest”

to the true function g0. In particular, we set (β0, gn) as the maximizer of
the centering function Mn over their respective parameter spaces,

Mn(β, g) = Pmβ,g = −P(Y− g(βTX))2, β = (Id, CT)T. (6.14)

Version of February 15, 2022– Created February 15, 2022 - 14:10

63



64 Semiparametric Inference

Since this expression is unknown, we estimate the coefficients an, and the
parameter matrix C0 by a maximizer (Ĉn, ĝn) of Mn,

Mn(β, g) = Pnmβ,g = − 1
n

n

∑
i=1

(Yi − g(βTXi))
2, β = (Id, CT)T, (6.15)

where,
ĝn(β̂T

n X) = ψ(β̂T
n X)T ân.

Derivative of a B-spline Curve

Let ψρ denote a B-spline basis vector. A B-spline function g of degree ρ is
denoted as follows,

g(x) = ψρ(x)Ta.

We know from Property 5 in Section 2.3 that the derivative of a B-spline
basis functions can be computed by,

d
dx

ψi,ρ(x) = ρ

{
ψi,ρ−1(x)
ti+ρ − ti

−
ψi+1,ρ−1(x)

ti+ρ+1 − ti+1

}
.

The derivative of the B-spline function g then equals,

d
dx

g(x) = ψρ−1(x)Ta′,

where the coefficients a′ are defined as,

a′i =
ρ(ai+1 − ai)

ti+ρ+1 − ti+1
.

We can derive the second derivative of a B-spline function recursively by,

d2

dx2 g(x) = ψρ−2(x)Ta′′.

The coefficients are defined as,

a′′i = (ρ− 1)
a′i+1 − a′i

ti+ρ − ti+1
.

The corresponding basis functions are defined as,

ψ′i,ρ−1(x) = ρ(ρ− 1)
{ ψi,ρ−2(x)

ti+ρ−1−ti
− ψi+1,ρ−2(x)

ti+ρ−ti+1

ti+ρ − ti
−

ψi+1,ρ−2(x)
ti+ρ−ti+1

− ψi+2,ρ−2(x)
ti+ρ+1−ti+2

ti+ρ+1 − ti+1

}
.

64
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6.5 Asymptotic results for the Central Mean Subspace estimation 65

Since we assume that g0 has at least 4 continuous partial derivatives, it
seems reasonable that we restrict our parameter space to B-spline func-
tions with at least 2 continuous partial derivatives. Thus we assume that
the coefficients of the best B-spline function gn(x) is restricted in the set,

An ={vec(a1, ..., ad) ∈ Rqd
n : ai ∈ Rqn , ‖ai‖∞ ≤ A1,

max
1≤j≤qn

|ai,j+1 − ai,j| ≤ A2/qn, max
1≤j≤qn

|(ai,j+1 − ai,j)− (ai,j − ai,j−1)| ≤ A3/q2
n},

for certain constants A1, A2, A3 > 0. As a consequence of Equation (2.6),
for functions g(x) = ψ(x)Ta, with a ∈ An,

‖g‖∞ = sup
x
|ψ(x)Ta| ≤ ‖a‖∞ ≤ A1.

Additionally if we assume,

1
qn

. |tj+1 − tj| .
1
qn

, for all j, (6.16)

a direct consequence is that,∥∥∥∥ d
dx

g
∥∥∥∥

∞
= sup

x
|ψρ−1(x)Ta′| . A2/qn · qn . A2.

In an analoguous manner, for the second derivative,∥∥∥∥ d2

dx2 g
∥∥∥∥

∞
= sup

x
|ψρ−2(x)Ta′′| . A3

q2
n

q2
n . A3.

Thus the B-spline functions have bounded partial derivatives up to the
2nd degree. A bounded derivative implies Lipschitz continuity, with the
Lipschitz constant being equal to the maximum attained on the domain.
We denote this as,

|ψ(x)− ψ(y)| ≤ K1‖x− y‖1

|ψ′(x)− ψ′(y)| ≤ K2‖x− y‖1.

By the Cauchy-Schwarz inequality we have for matrices β1 = (Id, CT
1 )

T, β2 =
(Id, CT

2 )
T, and for any X,

|ψ(βT
1 X)− ψ(βT

2 X)| ≤ K1‖(β1 − β2)
TX‖1

≤ K1‖β1 − β2‖F‖X‖1,
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where ‖ · ‖F is the Frobenius norm, i.e.,

‖β1 − β2‖F = ‖vec(β1 − β2)‖2 = ‖vec(C1 − C2)‖2.

Therefore,

|ψ(βT
1 X)− ψ(βT

2 X)| ≤ K1‖X‖1‖vec(C1 − C2)‖2.

For simplicity we say that L1 = K1 supX∈X ‖X‖1. With similar reasoning
we can show that for L2 = K2 supX∈X ‖X‖1,

|ψ′(βT
1 X)− ψ′(βT

2 X)| ≤ L2‖vec(C1 − C2)‖2.

We briefly remind the reader of the assumptions we make for the results
for the results in this section.

Assumption 1 0 < det(I∗) < ∞, where I∗ is defined as,

I∗ = {E[g′0(βT
0 X)⊗2]}−1E[(Y− g0(βT

0 X))g′(βT
0 X)]⊗2{E[g′0(βT

0 X)⊗2]}−1.

Assumption 2 We assume that X ∈ X for some bounded subset X of Rp, and
Y ∈ Y ⊂ R with,

P|Y|4 < ∞.

Assumption 3 The function g0 has at least 4 continuous (partial) derivatives.

Assumption 4 The number of knots is a non-decreasing sequence qd
n → ∞ such

that,
qd

n log(n)
n

→ 0, as n→ ∞. (6.17)

Assumption 5

vec(C0) ∈ {x ∈ R(p−d)d : ‖x‖2 ≤ r} ≡ C,

for some constant r.

Assumption 6 For each n,
an ∈ An.

Assumption 7 Let (ti,1, ..., ti,qn), for i = 1, ..., d be the knot sequence along the
i-th axis.

1/qn . |ti,j − ti,j+1| . 1/qn.
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Assumption 1 implies that the asymptotic distribution of
√

n(vec(Ĉn −
C0)) is non-degenerate. Assumption 3 is a smoothness assumption on
the regression function g0. A consequence is that for two matrices β1 =
(Id, CT

1 )
T, β2 = (Id, CT

2 )
T,

|g0(βT
1 X)− g0(βT

2 X)| ≤ L3‖vec(C1 − C2)‖2, (6.18)

for some constant L3 > 0. Assumptions 5 and 6 ensure that the class of loss
functions has finite entropy, and additionally due to Assumption 6 and 7
the sieves of B-splines are Lipschitz functions with Lipschitz derivatives.
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6.5.2 Consistency

To use Theorem 6.4, we need to prove the consistency of Ĉn for C0. How-
ever, since our M-estimator involves the maximization over the parameter
matrices C and B-spline function coefficients a, we show consistency of
(Ĉn, ân) for (C0, an). We apply Theorem 4.4. This involves demonstrating
that,

‖Mn −Mn‖C×An → 0. (6.19)

Define the class of loss functions as,

Mn = {mβ,g(X, Y) : g(x) = ψ(x)Ta, a ∈ An, β = (I, CT)T, vec(C) ∈ C}.

Note that,

EP‖Gn‖Mn =
√

n‖Pn − P‖Mn .

If we show that the right-hand side of the maximal inequality in Equation
(4.10) grows slower than

√
n, this implies that Equation (6.19) is satisfied.

We prove that the entropy integral grows slower than
√

n in Lemma 6.2.

Lemma 6.2 If Assumptions 1-7 are satisfied, then,

J[](1,Mn, L2) =
∫ 1

0

√
log N[](ε,Mn, L2)dε .

√
qd

n log(qn).

Proof. The construction of the function class Mn suggests that we check
whether the conditions of Theorem 4.3 hold, so that we can bound the
bracketing entropy of Mn by the covering entropy of C × An. Let β1 =
(Id, CT

1 )
T, β2 = (Id, CT

2 )
T be two parameter matrices in the Grassman-manifold,

and g1(x) = ψ(x)Ta1, g2(x) = ψ(x)Ta2 be two B-spline functions of degree
3. For any (X, Y),

|(mβ1,g1 −mβ2,g2)(X, Y)| = |2Y(g1(βT
1 X)− g2(βT

2 X)) + g2(βT
2 X)2 − g1(βT

1 X)2|
= |(2Y− g1(βT

1 X)− g2(βT
2 X))(g1(βT

1 X)− g2(βT
2 X))|

≤ (2|Y|+ |ψ(βT
1 X)a1|+ |ψ(βT

2 X)a2|)|ψ(βT
1 X)Ta1 − ψ(βT

2 X)Ta2|.

By the Hölder inequality and property 2 in Section 2.3 we have for i = 1, 2,

|ψ(βT
i X)Tai| ≤ ‖ψ(βT

i X)‖1 · ‖ai‖∞ ≤ A1 (6.20)

Thus,

|(mβ1,g1 −mβ2,g2)(X, Y)| ≤ 2(|Y|+ A1)|ψ(βT
1 X)Ta1 − ψ(βT

2 X)Ta2|.
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We can bound the difference in B-spline functions on the right by applying
the triangle inequality and then Hölder’s inequality,

|ψ(βT
1 X)Ta1 − ψ(βT

2 X)Ta2| = |ψ(βT
1 X)Ta1 − ψ(βT

1 X)Ta2

+ ψ(βT
1 X)Ta2 − ψ(βT

2 X)Ta2|
≤ ‖ψ(βT

1 X)‖1‖a1 − a2‖∞ + ‖ψ(βT
1 X)− ψ(βT

2 X)‖1‖a2‖∞

≤ ‖a1 − a2‖∞ + A1L1‖vec(C1 − C2)‖2.
(6.21)

Let,
d2((C1, a1), (C2, a2)) = ‖a1 − a2‖∞ + ‖vec(C1 − C2)‖2.

Then,

|(mβ1,g1 −mβ2,g2)(X, Y)| ≤ d((C1, a1), (C2, a2))F(X, Y), (6.22)

with F(X, Y) = 2(|Y|+ A1)2 max{1, A1L1} = 4(|Y|+ A1)max{1, A1L1}.
By applying Theorem 4.3 we obtain,

N[](2ε‖F‖L2(P),Mn, L2(P)) ≤ N(ε, C ×An, d).

Additionally,

‖F‖2
L2

=
∫
X ,Y

F(x, y)2dP(x, y)

=
∫
X ,Y

(4(|y|+ A1)max{1, A1L2})2dP(x, y)

= 16 max{1, A1L2}2
∫
|y|2 + 2A1|y|2 + A2

1dP(x, y)

= 16 max{1, A1L2}2(P|Y|2 + 2A1P|Y|+ A2
1).

Thus ‖F‖L2 < ∞ by Assumption 2. Furthermore the L2-norm is lower
bounded by,

‖F‖2
L2
≥ 16A2

1 max{1, A1L1}2 > 0.

In conclusion, by Lemma 4.1, for any ε′ = ε
2‖F‖L2(P)

> 0,

log N[](ε
′,Mn, L2) ≤ log N(ε, C ×An, d)

≤ log
(

N(ε, C, ‖ · ‖2) · N(ε,An, ‖ · ‖∞)

)
. (p− d)d log

(
r
ε

)
+ qd

n log
(√

qd
n

A1

ε

)
. qd

n log(qn) + ((p− d)d + qd
n) log

(
max{r, A1}

ε

)
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We can now bound the entropy integral,

J[](1,Mn, L2) .
∫ 1

0

√
qd

n log(qn) + ((p− d)d + qd
n) log

(
max{r, A1}

ε

)
dε

≤
√

qd
n log(qn) +

√
((p− d)d + qd

n) log(max{r, A1})

+
√
(p− d)d + qd

n

∫ 1

0

√
log
(

1
ε

)
dε

=
√

qd
n log(qn) +

√
(p− d)d + qd

n log(max{r, A1})

−
√

π

2

√
(p− d)d + qd

n

= O
(√

qd
n log(qn)

)
.

We can now readily apply the maximal inequality from Equation (4.10).
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6.5 Asymptotic results for the Central Mean Subspace estimation 71

Theorem 6.6 If the conditions of Lemma 6.2 are satisfied, we have that

‖vec(Ĉn − C0)‖2 = oP(1), and (6.23)

sup
x
|ĝn(x)− g0(x)| = oP(1). (6.24)

Proof. Recall that β = (Id, CT)T and g(x) = ψ(x)Ta denote a parameter
matrix and a B-spline of degree 3 on qd

n knots, respectively. The second
moment of the natural envelope function Vn ofMn has the following form,

PV2
n = P

{
sup

m∈Mn

m2
}

= P
{

sup
C,a

(−Y2 + 2Yg(βTX)− (g(βTX))2)2
}

≤ P
{

sup
C,a

Y4 − 2Y3g(βTX) + 3(Yg(βTX))2 − 2Y(g(βTX))3

+ (g(βTX))4
}

≤ P
{

sup
C,a
|Y|4 + |Y|3|g(βTX)|+ 3|Y|2|g(βTX)|2 + 2|Y||g(βTX)|3

+ |g(βTX)|4
}

≤ P
{
|Y|4 + |Y|3‖a‖∞ + 3|Y|2 + 3|Y|2‖a‖2

∞ + 2|Y|‖a‖3
∞ + ‖a‖4

∞

}
,

(6.25)

where we used the bound in Equation (2.6) in the last inequality. This
term does not grow in n, and is finite since P|Y|4 < ∞, and ‖a‖∞ ≤ A1. In
combination with Lemma 6.2 we conclude that,

‖Pn − P‖Mn → 0, as n→ ∞.

Thus Mn is a Glivenko-Cantelli class. The other conditions of Theorem
4.4 are readily seen to hold. One of the criteria is that,

Mn(β0, gn) ≥ Mn(β, g), for all β = (Id, CT)T,

vec(C) ∈ C; g(x) = ψ(βTX)Ta, a ∈ An.
(6.26)
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Since (β0, gn) are defined as the maximizers of Mn, this holds.

The third and final requirement is that

Mn(β̂n, ĝn) ≥ sup
(β,g)

Mn(β, g)− oP(1). (6.27)

Since β̂ = (Id, ĈT
n )

T and ân are found by maximizing Mn, this requirement
is satisfied. Thus we conclude that by Theorem 4.4,

d((Ĉn, ân), (C0, an))
P→ 0. (6.28)

The proof is then concluded since supx |gn(x)− g0(x)| → 0 by Equation
(2.8), which is the bias of our spline estimator.
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6.5 Asymptotic results for the Central Mean Subspace estimation 73

6.5.3 Rate of Convergence

Proving consistency of Ĉn for C0 was sufficient concerning the conver-
gence of the finite-dimensional part of our estimator. In contrast, we do
require a rate of convergence of B-spline estimator to the ”truth” g0 in
Theorem 6.4. In particular we show,

‖ĝn − g0‖L2 = OP(n−c1),

for some constant c1 > 0. Since we are working with sieves† that grow
larger in n, we first consider the rate of convergence of ĝn to the best esti-
mator gn in each sieve. By the triangle inequality we have,

‖ĝn − g0‖L2 ≤ ‖ĝn − gn‖L2 + ‖gn − g0‖L2 .

The second term on the right-hand side equals the estimation bias, and we
know from Equation (2.8) that if the continuous partial derivatives of g0 of
order p exist,

sup
x
|gn(x)− g0(x)| = OP(q

−p
n ).

We bound the first term (the ”variance”, see our discussion in Section 4.3.2)
by applying Theorem 4.5. This involves using the maximal inequality in
Equation (4.10). Write β1 = (Id, CT

1 )
T, β2 = (Id, CT

2 )
T, and g1, g2 two B-

spline functions of degree 3 on qd
n knots. Define dn as the non-negative

function,

dn((β1, g1), (β2, g2)) =
√
‖vec(C1 − C2)‖2

2 + ‖g1 − g2‖2
L2

.

Therefore we want to compute the entropy integral of the function class of
centered loss functions,

Mn,δ = {mβ,g −mβ0,gn : g = ψ(X)Ta, a ∈ An, β = (I, CT)T, vec(C) ∈ C,
δ
2 < dn((β, g), (β0, gn)) ≤ δ}.

Fortunately, computing the entropy integral of Mn,δ is easily reduced to
computing the entropy integral ofMn. We demonstrate this in the follow-
ing lemma.

Lemma 6.3 If Assumptions 1-7 are satisfied, then,

J[](1,Mn,δ, L2(P)) .
√

qd
n log(qn).

†The sieves correspond to the amount of knots qd
n of the spline estimator.
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Proof. Note that for any two elements (mβ1,g1 −mβ0,gn), (mβ2,g2 −mβ0,gn) ∈
Mn,δ,

|((mβ1,g1 −mβ0,gn)− (mβ2,g2 −mβ0,gn))(X, Y)| = |(mβ1,g1 −mβ2,g2)(X, Y)|.

By Equation (6.22),

|(mβ1,g1 −mβ2,g2)(X, Y)| ≤ d((C1, a1), (C2, a2))F(X, Y).

The rest of the argument is the same as that of Lemma 6.2.

Theorem 6.7 We have that√
n

qd
n log(qn)

‖ĝn − gn‖L2 = OP(1), (6.29)

and √
n

qd
n log(qn)

‖vec(Ĉ)− vec(C0)‖2 = OP(1). (6.30)

Proof. We check that the conditions of Theorem 4.5 hold. The first condi-
tion holds if

sup
δ/2<dn((β,g),(β0,gn))≤δ

Mn(β, g)−Mn(β0, gn) ≤ −δ2. (6.31)

Let v =

(
vec(C− C0)

a− an

)
. We can use a 3rd order Taylor expansion of Pmβ,g

around (vec(C0), an)) to obtain,

Pmβ,g = Pmβ0,gn +∇vec(C),aPmβ0,gn v +
1
2

vT∇2
vec(C),aPmβ0,gn v + O(|v|3).

Since (vec(C0), an) maximize Pmβ,g, the first derivatives equal zero, and
the second derivative evaluated at (vec(C0), an) is negative-definite. Con-
sequently,

Mn(β, g)−Mn(β0, gn) =
1
2

vT∇2
vec(C),aPmβ0,gn v + O(|v|3)

= (vec(C)− vec(C0))
TP[g′⊗2

n (βT
0 X) + (Y− gn(βT

0 X))

· g′′n(βT
0 X)](vec(C)− vec(C0))

− (a− an)
TPψ(βT

0 X)ψ(βT
0 X)T(a− an) + O(|v|3)

= P[g′⊗2
n (βT

0 X) + (Y− gn(βT
0 X))g′′n(βT

0 X)]‖vec(C)− vec(C0)‖2
2

− P(g(βT
0 X)− gn(βT

0 X))2 + O(|v|3)
≤ −d2((β, g), (β0, gn)) + O(d3((β, g), (β0, gn))).
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6.5 Asymptotic results for the Central Mean Subspace estimation 75

Denote the natural envelope functionMn,δ by G(X, Y). Then,

G(X, Y) = sup
β,g

(mβ,g(X, Y)−mβ0,gn(X, Y))

≤ sup
β,g

dn((β, g), (β0, gn))F(X, Y)

≤ δF(X, Y).

From the proof of Lemma 6.2, and the fact that δ > 0, it follows that,

0 < ‖G‖2
L2
≤ δ2‖F‖2

L2
< ∞.

Combined with Lemma 6.3 it then follows that,

EP‖Gn‖Mn,δ . δ
√

qd
n log(qn) = φn(δ). (6.32)

This allows us to compute the rate of convergence rn, which must satisfy

r2
nφn

(
1
rn

)
≤
√

n,

r2
n

√
qd

n log(qn)
1
rn
≤
√

n,

rn ≤
√

n
qd

n log(qn)
.

The last two conditions we require are,

Mn(β̂n, ĝn) ≥Mn(β0, gn)−OP(r−2
n ) (6.33)

dn((β̂n, ĝn), (β0, gn))
P→ 0. (6.34)

Condition (6.33) is automatically satisfied since (Ĉn, ĝn) is a maximizer
of Mn. Condition (6.34) is a consequence of Theorem 6.6. Therefore we
conclude that √

n
qd

n log(qn)
dn((β̂n, ĝn), (β0, gn)) = OP(1). (6.35)

Combining the result above and Equation (6.28) we obtain,

‖ĝn − g0‖2
L2
≤ ‖ĝn − gn‖2

L2
+ ‖gn − g0‖2

L2

= OP

(√
qd

n log(qn)

n

)
+ OP(q

−p
n ).

(6.36)
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From the literature we know that the asymptotic variance term is typi-

cally of order
√

qd
n

n (see e.g. Huang (2003)). The additional log(qn) term
is due to the assumption that the best spline coefficients in each sieve An
are bounded in the infinity norm. If one were to make the assumption
that ‖an‖2 ≤ k for some constant k, we would obtain the optimal asymp-
totic variance with our approach. For our purposes the obtained rate of
convergence is sufficient. Let,

qn ≈ n1/(2p+d).

Recall that we assume p = 4,

‖ĝn − g0‖2
L2

= OP(n−2p/(2p+d) log(n)) = OP(n−8/(8+d) log(n)). (6.37)

Consequently, for any c1 < 4/(8 + d) condition A1 of Theorem 6.4 is sat-
isfied.
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6.5 Asymptotic results for the Central Mean Subspace estimation 77

6.5.4 Stochastic Equicontinuity

We remind the reader that Condition A3 holds if for any K > 0,

‖Gn(m̃β,g − m̃β0,gn)‖{‖vec(C−C0)‖2≤Kn−c1 ,‖g−g0‖L2≤Kn−c1} = oP(1),

where c1 = 4/(8 + d). Additionally from Equation (6.13) we know that,

m̃β,g = ∂βmβ,g.

We prove this by performing entropy calculations and using the maximal
inequality in Equation (4.10). We define the function class,

Mn = {m̃β,g − m̃β0,g0 : ‖vec(C− C0)‖2 ≤ Kn−c1 , ‖g− g0‖L2 ≤ Kn−c1}.

Write the function class of the i-th component of the functions in Mn,
m̃(i)

β,g − m̃(i)
β0,g0

as,

M
(i)
n = {m̃(i)

β,g − m̃(i)
β0,g0

: ‖vec(C− C0)‖2 ≤ Kn−c1 , ‖g− g0‖L2 ≤ Kn−c1}.

Recall that the covering number of the Cartesian product of two spaces is
bound by the product of the covering number of the spaces. This implies
that it is sufficient to find a bound on the entropy integral for all M(i)

n , and
the entropy integral of Mn will have the same upper bound times (p− d)d.

In order to bound the entropy integral, we first bound the bracketing num-
ber using Theorem 4.3. We denote the parameter space of m̃(i)

β,g − m̃(i)
β0,g0

as,

Θn = {(β, g) : β = (Id, CT)T; g(x) = ψ(x)Ta : ‖vec(C− C0)‖2 ≤ Kn−c1 ;

‖g− g0‖L2 ≤ Kn−c1}.

Lemma 6.4
J[](1,Mn, L2(P)) .

√
qd

n log(qn).

Proof. Note that for any two elements (m̃(i)
β1,g1
− m̃(i)

β0,g0
), (m̃(i)

β2,g2
− m̃(i)

β0,g0
) ∈

M
(i)
n , and any X, Y,

|((m̃(i)
β1,g1
− m̃(i)

β0,g0
)− (m̃(i)

β2,g2
− m̃(i)

β0,g0
))(X, Y)| = |(m̃(i)

β1,g1
− m̃(i)

β2,g2
)(X, Y)|.

From Equation (6.13) it follows that,

|(m̃(i)
β1,g1
− m̃(i)

β2,g2
)(X, Y)| = | − 2(Y− g1(βT

1 X))g(i)1 (βT
1 X)

+ 2(Y− g2(βT
2 X))g(i)2 (βT

2 X)|.
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If we write,

U1 = |g′(i)2 (βT
2 X)− g′(i)1 (βT

1 X)|

U2 = |g1(βT
1 X)g′(i)1 (βT

1 X)− g2(βT
2 X)g′(i)2 (βT

2 X)|,
(6.38)

we can bound the difference between two elements by,

|(m̃(i)
β1,g1
− m̃(i)

β2,g2
)(X, Y)| ≤ 2|Y|U1 + 2U2.

Note that,
g′(i)(βTX) = ψ′(i)(βTX)Ta.

Thus,

U1 = |ψ′(i)(βT
2 X)Ta2 − ψ′(i)(βT

1 X)Ta1|
= |ψ′(i)(βT

2 X)Ta2 − ψ′(i)(βT
2 X)Ta1 + ψ′(i)(βT

2 X)Ta1 − ψ′(i)(βT
1 X)Ta1|

= |ψ′(i)(βT
2 X)T(a2 − a1) + (ψ′(i)(βT

2 X)− ψ′(i)(βT
1 X))Ta1|

Applying the triangle inequality allows us to consider both terms sepa-
rately, and Hölder’s inequality applied on both terms gives,

U1 ≤ ‖ψ′(i)(βT
2 X)‖∞‖a2 − a1‖1

+ ‖ψ′(i)(βT
2 X)− ψ′(i)(βT

1 X)‖1‖a1‖∞.

Since we constructed our sieves so that the basis functions and their deriva-
tives are Lipschitz, we can bound this by,

U1 ≤ A2‖a2 − a1‖∞ + A1L2‖vec(C2 − C1)‖2. (6.39)

We can bound U2 by,

U2 = |ψ(βT
1 X)Ta1ψ′(i)(βT

1 X)Ta1 − ψ(βT
2 X)Ta2ψ′(i)(βT

1 X)Ta1

+ ψ(βT
2 X)Ta2ψ′(i)(βT

1 X)Ta1 − ψ(βT
2 X)Ta2ψ(i)(βT

2 X)Ta2|
≤ |(ψ(βT

1 X)Ta1 − ψ(βT
2 X)Ta2)ψ

′(i)(βT
1 X)Ta1|

+ |ψ(βT
2 X)Ta2(ψ

′(i)(βT
1 X)Ta1 − ψ(i)(βT

2 X)Ta2)|.

Using the Hölder inequality gives us,

U2 ≤ ‖ψ(βT
1 X)Ta1 − ψ(βT

2 X)Ta2‖1‖ψ′(i)(βT
1 X)Ta1‖∞

+ ‖ψ(βT
2 X)Ta2‖∞‖ψ′(i)(βT

1 X)Ta1 − ψ′(i)(βT
2 X)Ta2‖1.
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Using the bounds in Equation (6.21) and (6.39) we obtain,

U2 ≤ A2

(
‖a2 − a1‖∞ + A1L1‖vec(C1 − C2)‖2

)
+ A1

(
A2‖a2 − a1‖∞ + A1L2‖vec(C2 − C1)‖2

) (6.40)

Consequently, by collecting the terms in equation (6.39) and (6.40) we ob-
tain,

|(m̃(i)
β1,g1
− m̃(i)

β2,g2
)(X, Y)| ≤ d((C1, a1), (C2, a2))Q(X, Y),

where Q equals,

Q(X, Y) = max{2A2 + A1A2, 2A1L2 + A1L1}.

We can now bound the bracketing number of M(i)
n using Theorem 4.3, and

in the same vein as Lemma 6.2,

log N[](ε
′,M(i)

n , L2) . log N(ε, C ×An, d)

where ε′ = ε
2‖Q‖L2

> 0. Equivalently to the entropy calculation in the

proof of Lemma 6.2, we obtain,

J[](1,M(i)
n , L2) .

√
qd

n log(qn).
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Lemma 6.5 (Stochastic equicontinuity) For d < 8 and any K > 0

sup
‖vec(C−C0)‖2≤Kn−c1 ,‖g−g0‖L2≤Kn−c1

|G(m̃β,g − m̃β0,g0)| = oP(1).

Proof. We know from Theorem 4.3 that (diam Θn)Q is an envelope func-
tion for the class M. From Theorem 6.7 it follows that

(diam Θ)Q = O(n−c1),

with c1 as defined in Equation (6.37). Using that qn ≈ n1/(d+8) and the
maximal inequality in Equation (4.10) we obtain,

‖Gn‖M .
√

nd/(8+d) log(n) ·
√

1
n8/(8+d) log(n)

.

Thus the condition holds as long as d < 8.

6.5.5 Asymptotic Normality

We can use the results from the previous sections to demonstrate asymp-
totic normality and

√
n-consistency of Ĉn for C0.

Theorem 6.8 If the conditions in Section 6.5.1 hold and d < 8, then,
√

n(vec(Ĉn)− vec(C0)) = −
√

n(Pg′0(βT
0 X)⊗2)−1

×Pn(Y− g0(βT
0 X)) + oP(1)

(6.41)

and
√

n(vec(Ĉn)− vec(C0)) is asymptotically normal with mean 0 and variance
{Pg′(βTX)⊗2}−1[P(Y− g(βTX))⊗2]{Pg′(βTX)⊗2}−1

Proof. We confirm that the conditions of Theorem 6.4 hold. From Theo-
rem 6.6, Theorem 6.7, and Lemma 6.5 it follows that Condition A1 and A3
hold. Condition A2 is met by the assumption that

√
n(vec(Ĉn)− vec(C0))

does not have a degenerate limit distribution.

Thus we only need to show that A4 holds, i.e., for some c2 > 1 such that
c1c2 > 1/2, for all (β, g) in

{(β, g) :β = (Id, CT)T, vec(C) ∈ C, ‖vec(C)− vec(C0)‖2 ≤ Kn−c1 ; g(x) = ψ(x)Ta,

a ∈ An, ‖g− g0‖∞ ≤ Kn−c1},
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the following condition holds,∣∣∣∣P{(m̃β,g − m̃β0,g0)− (∂11mβ0,g0 − ∂21mβ0,g0 [H
∗])(vec(C)− vec(C0))

−
(

∂12mβ0,g0

[
g− g0

‖g− g0‖∞

]
− ∂22mβ0,g0

[
H∗,

g− g0

‖g− g0‖∞

])
· ‖g− g0‖∞

}∣∣∣∣
= o(‖vec(C)− vec(C0)‖2) + O(‖g− g0‖c2

∞).

We have that,

Pm̃β,g = P(∂1mβ,g − ∂2mβ,g[H∗]) = P(∂1mβ,g).

Thus if we use a Taylor expansion at (β0, g0), we obtain,

Pm̃β,g = P(∂1mβ0,g0) + P(∂11mβ0,g0)(vec(C)− vec(C0))

+ P(∂12mβ0,g0(g− g0))[H∗] +
1
2

∂111mβ1,g1(vec(C)− vec(C0))
2

+ ∂121mβ2,g2(vec(C)− vec(C0))(g− g0)[H] +
1
2

∂122mβ3,g3(g− g0)
2[H1, H2],

(6.42)

where βi = (Id, CT
i )

T, gi are such that,

‖vec(Ci)− vec(C0)‖2 ≤ Kn−c1 , ‖gi − g0‖∞ ≤ Kn−c1 ,

and H, H1, H2 are proper tangents as described in Section 6.3. Conse-
quently if we assume that the third derivatives of Pmβ,g are bound in a
neighbourhood of (β0, g0) (of the sizes in the display above), we have that
Equation (6.42) equals,∣∣∣∣P{1

2
∂111mβ1,g1(vec(C)− vec(C0))

2 + ∂121mβ2,g2(vec(C)− vec(C0))(g− g0)

+ ∂122mβ3,g3(g− g0)
2
}∣∣∣∣ = O(‖vec(C)− vec(C0)‖2

2) + O(‖g− g0‖2
∞)

= o(‖vec(C)− vec(C0)‖2) + O(‖g− g0‖2
∞).

Thus all the conditions of Theorem 6.4 are satisfied.
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Note that the requirement c1c2 > 1/2 is satisfied if,

2 · 4
8 + d

> 1/2.

This implies that d < 8. Since the computational complexity of our es-
timation method grows exponentially in d, it may desirable that such a
condition is satisfied. If one however wants to generalize this technique,
higher order B-splines (it is however necessary to assume g0 has more con-
tinuous (partial) derivatives) can be considered. From Equation (6.37) one
can then obtain the rate of convergence c1, which allows for higher dimen-
sions d.
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6.6 A cross-validation criterion for unknown di-
mensions

Asymptotic normality and
√

n-convergence have been established when
d0 is known. In this section we propose a consistent estimator for d0. In
this setting we assume that,

Y = g0(βT
0 X) + ε, (6.43)

where the dimension of the column space of β0 is unknown. From Section
3.4 we know that in order to estimate the structural dimension, we require
a cross-validation criterion. As we discussed in Section 3.4, the linearity
of B-splines allows us to perform LOOCV, similar to Huang and Chiang
(2017), with just one model estimation. As an alternative we show that a
K-fold cross-validation criterion provides a consistent estimator. Let Sk,
k = 1, ..., K, denote the index set of the elements (Xi, Yi) in the k-th fold.
For every fold k = 1, ..., K, we estimate (Ĉ−k, ĝ−k) by a maximizer of,

P
(−k)
n md,β−k,g−k =

1
n− |Sk| ∑

i/∈Sk

−(Yi − g−k
d ((β−k)TXi))

2.

For every fold k = 1, ..., K we compute,

(Ĉ−k, ĝ−k) = arg max
C,g

1
n− |Sk| ∑

i/∈Sk

mβ,g(Xi, Yi)

= arg max
C,g

P
(−k)
n mβ,g.

From our discussion in Section 3.4.2 we know that d0 can be written as,

d0 = arg max
0≤d≤p

M(d) = E[m
β̂−k,ĝ−k(Xj, Yj)],

for any j ∈ Sk. By Theorem 6.6,

max
1≤k≤K

d((Ĉ−k
d0

, ĝ−k
d0
), (C0, g0)) = oP(1). (6.44)

We estimate d0 by,

d̂ = arg max
0≤d≤p

Mn(d) =
1
n

K

∑
k=1

∑
i∈Sk

m
β̂−k

d ,ĝ−k
d

.
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Theorem 6.9 If d0 < 8,

max
0≤d≤8

|Mn(d)−M(d)| = oP(1), (6.45)

and consequently P(d̂ = d0)→ 1.

Proof. Let 0 ≤ d ≤ max{p, 7}. Note that,

|Mn(d)−M(d)| =
∣∣∣∣ 1n K

∑
k=1

∑
i∈Sk

m
β̂−k

d ,ĝ−k
d
(Xi, Yi)− P(m

β̂−k
d ,ĝ−k

d
)

∣∣∣∣
=

∣∣∣∣ 1
K

K

∑
k=1

1
|Sk| ∑

i∈Sk

m
β̂−k

d ,ĝ−k
d
(Xi, Yi)− P(m

β̂−k
d ,ĝ−k

d
)

∣∣∣∣
For each fold k = 1, ..., K,∣∣∣∣ 1

|Sk| ∑
i∈Sk

m
β̂−k

d ,ĝ−k
d
(Xi, Yi)− P(m

β̂−k
d ,ĝ−k

d
)

∣∣∣∣ = ∣∣∣∣(P(k)
n − P)m

β̂−k
d ,ĝ−k

d

∣∣∣∣.
Analogous Lemma 6.2 it follows that,∣∣∣∣(P(k)

n − P)m
β̂−k

d ,ĝ−k
d

∣∣∣∣ .
√

qd
n log(qn)

|Sk|
.

A direct consequence is that,

|Mn(d)−M(d)| = oP(1).

By Theorem 4.4 we then have P(d̂ = d0)→ 1, as n→ ∞.

Thus we estimate d0 by d̂, and we can then use the least squares technique
to estimate the (p − d̂)d̂ parameter matrix Ĉ. Since the column space of
β̂, S(β̂) = (Id̂, ĈT)T, has a random dimension, it makes sense to consider
large sample properties of the projection matrix Pβ, which is defined as the
orthogonal projection operator onto S(β), i.e.,

Pβ = β(βTβ)−1βT.

Let Sβ0 = (Y − g(βT
0 X))g′(βT

0 X), Vβ0 = E[g′(βT
0 X))⊗2], and vec(A0) =

V−1
β0

Sβ0 . As a consequence the asymptotic variance of Ĉd0 can be written
as E[(vec(A0))

⊗2]. We determine the asymptotic distribution of the pro-
jection matrix of β̂d0 in the following theorem.

84
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Theorem 6.10 If we let 0d0 denote the d0× d0 matrix with only zero entries, we
have that,

√
n(vec(P

β̂d0
− Pβ0))

d→ N(0, Σ0), as n→ ∞, (6.46)

where Σ0 = E[(vec((Ip− Pβ0)(0d0 , AT
0 )

T(β0β0)
−1βT

0 + β0(βT
0 β0)

−1(0d0 , AT
0 )(Ip−

Pβ0)))
⊗2].

Proof. Let C ∈ R(p−d)×d. The projection operator P maps C to,

C 7→ β(βTβ)−1βT,

where β = (Id, CT)T. Theorem 6.8 gives,
√

nvec(Ĉd0 − C0)→ N(0, E[(vec(A0))
⊗2])

Consequently,
√

nvec(β̂d0 − β0)
d→ N(0, E[(vec((0d0 , A0)))

⊗2]).

The asymptotic distribution achieved in Huang and Chiang (2017) differs
slightly from ours due to the asymptotic covariance we find for β̂d0 − β0.
The derivative of the projection operator with respect to β is given by,

C 7→ (βTβ)−1βT − β(βTβ)−1(β + βT)(βTβ)−1βT + β(βTβ)−1

= (βTβ)−1βT − β(βTβ)−1Pβ − Pβ(βTβ)−1βT + β(βTβ)−1

= (Ip − Pβ)(βTβ)−1βT + β(βTβ)−1(Ip − Pβ).

If we then apply the multivariate Delta method, we obtain,
√

nvec(P
β̂d0
− Pβ0)

d→ N(0, E[(vec((Ip − Pβ0)(0d0 , AT
0 )

T(βT
0 β0)

−1βT
0

+ β0(βT
0 β0)

−1(0d0 , AT
0 )

T(Ip − Pβ0)))
⊗2]).

If we let E denote the event,

E = {d̂ = d0}.
Since 1(E) + 1(Ec) = 1, for all ε > 0, and

P(‖
√

nvec(P
β̂
− Pβ0)‖21(Ec) > ε) ≤ P(Ec),

as a consequence of Theorem 6.10 we have,
√

nvec(P
β̂
− Pβ0) =

√
nvec(P

β̂d0
− Pβ0)1(E) + oP(1). (6.47)

Consequently, P
β̂
− Pβ0 has the same asymptotic distribution as P

β̂d0
− Pβ0 .
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Chapter 7
Finite Sample Performance

In this chapter we assess the performance of our estimation method in
various models, and discuss some of the drawbacks and advantages. The
following regression models are used for the benchmark:

M1. Y = (βT
0 X)3 + ε with ε ∼ N(0, 0.2),

M2. Y = cos(2X1)− cos(X2) + ε with ε ∼ N(0, 0.2),

M3. Y = X1 + cos(X2) + eX3 + ε with ε ∼ N(0, 0.2).

Let ej denote the j-th basis vector in R10. The corresponding basis matrices
are then respectively (1, 1, 1, 0, ..., 0)T ∈ R10, (e1, e2) ∈ R10×2, (e1, e2, e3) ∈
R10×3. The first and third model are chosen arbitrarily, and the second
model corresponds to model M2 in Section 4.2 of Huang and Chiang (2017).
Since they also estimate the CMS for this model, it allows us to compare
the two techniques in terms of performance and computation time. In
these simulations, we used p = 10 features. We let Xi = (Xi1, ..., Xip),
where

Xi = Σ1/2
X wi.

ΣX is a p× p matrix with (i, j)-th entry .5|i−j| and wi = (wi1, ..., wip)
T has

entries wij independently standard normally distributed (Normal) or uni-
formly on [−

√
3,
√

3] (Uniform). The third distribution used for X is a mix-
ture normal distribution according to N(2 · ej, ΣX), j = 1, 10, with proba-
bility 1/2 each. We ran 1000 simulations of each model combination and
different distributions of X for sample sizes n = 100, 200, 400. Due to the
random dimensions of βd̂, we evaluated the estimation accuracy using the
projection matrices, i.e.

∆(βd, β0) = ‖Pβd − Pβ0‖2,
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where ‖ · ‖2 here denotes the spectral norm.

7.1 Computation scheme

In Table 7.1 and 7.2 we summarized the results from the 1000 simulation
studies we performed. In Table 7.3 we included the results from the simu-
lation studies performed by Huang and Chiang (2017). The minimization
of CV(d, Cd, gn) was carried out by the following steps:

1. Set CV(0) = ∑n
i=1(Yi −Y−i

)2 and CV(p + 1) = ∞.

2. Set d = 1, and compute

(Ĉd, ĝn) = arg min
Cd,g

CV(d, Cd, g)

Set CV(d) = CV(d, Ĉd, q̂d
n).

3. If CV(d) < CV(d− 1), set d = d + 1 and go to step 1. If CV(d) ≥
CV(d− 1), estimate (d0, C0, qd0

n ) by (d− 1, Ĉd−1, q̂d−1
n ). If d = 0, esti-

mate E(Y|X) by the sample mean, Y.

For large d0 or n, this scheme can be computationally intensive. The opti-
mization of this scheme, in particular over the number of knots, is out of
the scope of this thesis. As such, the results in the tables below are mostly
meant to demonstrate that in a reasonable amount of time, one can ob-
tain satisfactory results. Additionally a one-to-one comparison is hard to
perform, however we can see that for d0 = 2 our estimation of the true
dimension performs adequately compared to that of Huang and Chiang.
They do seem to achieve lower errors, but this could be due to the con-
vergence criterion applied. Other factors at play, are the initial points for
C and bandwidth at which the optimization scheme begins. In our own
findings we realized that the number of degrees of freedom seems to play
a large role in the performance of the optimization scheme. The computa-
tion times in the simulations performed in Huang and Chiang for the CMS
estimation are not mentioned. It is also noteworthy that the estimation of
d0 is worse when d0 is larger. Whereas for d0 = 1, a sample size of n = 100
seems to perform satisfactory for the normal and uniformly distributed X,
for d0 = 3 we need at least n = 200 to obtain a comparable performance.
Additionally all estimations seem to drop in efficiency when X is a mix-
ture of normal distributions. The performance does steadily improve as
the sample size grows, both in terms of structural dimension estimates
and estimation accuracies.

88
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Proportions of d̂

Model dist. of X n 0 1 2 3 4 5

M1 (d0 = 1) Normal 100 0 969 31 0 0 0
200 0 988 12 0 0 0
400 0 1000 0 0 0 0

Uniform 100 0 1000 0 0 0 0
200 0 1000 0 0 0 0
400 0 999 1 0 0 0

Mixture normal 100 0 647 349 4 0
200 0 848 152 0 0 0
400 0 858 142 0 0 0

M2 (d0 = 2) Normal 100 1 6 893 101 0 0
200 0 54 945 1 0 0
400 0 33 967 0 0 0

Uniform 100 0 117 819 64 0 0
200 0 64 934 2 0 0
400 0 23 977 0 0 0

Mixture normal 100 0 202 685 113 0 0
200 0 118 754 128 0 0
400 0 84 823 93 0 0

M3 (d0 = 3) Normal 100 0 510 7 483 0 0
200 0 269 0 730 1 0
400 0 84 0 884 32 0

Uniform 100 0 259 2 739 0 0
200 0 58 0 942 0 0
400 0 26 0 974 0 0

Mixture normal 100 0 487 7 506 0 0
200 0 236 2 759 3 0 0
400 0 91 0 884 25 0 0

Table 7.1: The proportions of 1000 structural dimension estimates of 1000 CMS
estimates under models M1-M3
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Model dist. of X n ∆(βd̂, β0) ∆(βd0 , β0) t (seconds)

M1 (d0 = 1) Normal 100 0.449 (0.16) 0.442 (0.15) 12
200 0.328 (0.14) 0.324 (0.13) 18
400 0.254 (0.11) 0.254 (0.11) 34

Uniform 100 0.363 (0.13) 0.363 (0.13) 9
200 0.258 (0.11) 0.258 (0.11) 16
400 0.229 (0.10) 0.229 (0.10) 34

Mixture normal 100 0.57 (0.353) 0.37 (0.199) 30
200 0.33 (0.306) 0.23 (0.148) 52
400 0.24 (0.207) 0.15 (0.091) 248

M2 (d0 = 2) Normal 100 0.53 (0.208) 0.47 (0.135) 22
200 0.36 (0.195) 0.321 (0.121) 63
400 0.34 (0.177) 0.27 (0.120) 115

Uniform 100 0.608 (0.22) 0.516 (0.13) 19
200 0.416 (0.11) 0.392 (0.10) 51
400 0.340 (0.133) 0.324 (0.09) 94

Mixture normal 100 0.73 (0.214) 0.61 (0.21) 24
200 0.78 (0.191) 0.56 (0.137) 48
400 0.58 (0.231) 0.48 (0.137) 106

M3 (d0 = 3) Normal 100 0.618 (0.39) 0.409 (0.26) 36
200 0.429 (0.35) 0.319 (0.11) 75
400 0.303 (0.15) 0.215 (0.05) 239

Uniform 100 0.41 (0.357) 0.197 (0.060) 50
200 0.22 (0.202) 0.17 (0.059) 89
400 0.18 (0.145) 0.16 (0.057) 160

Mixture normal 100 0.59 (0.398) 0.21 (0.062) 34
200 0.39 (0.199) 0.20 (0.039) 81
400 0.27 (0.179) 0.17 (0.083) 201

Table 7.2: The means (standard deviations) of 1000 estimation accuracies, and the
median computation times (seconds) of 1000 CS estimates under models M1-M3.
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Proportions of d̂

Model dist. of X n 0 1 2 3 4 5

M2 (d0 = 2) Normal 100 23 187 716 54 13 7
200 0 20 944 36 0 0
400 0 0 979 21 0 0

Uniform 100 0 61 741 135 42 21
200 0 0 971 29 0 0
400 0 0 999 1 0 0

Mixture normal 100 48 184 739 24 1 4
200 0 32 938 30 0 0
400 0 0 981 19 0 0

Model dist. of X n ∆(βd̂, β0) ∆(βd0 , β0)

M2 (d0 = 2) Normal 100 0.42 (0.375) 0.24 (0.172)
200 0.19 (0.211) 0.15 (0.103)
400 0.14 (0.135) 0.12 (0.067)

Uniform 100 0.42 (0.348) 0.24 (0.120)
200 0.17 (0.151) 0.15 (0.067)
400 0.08 (0.041) 0.08 (0.028)

Mixture normal 100 0.38 (0.379) 0.22 (0.173)
200 0.18 (0.225) 0.14 (0.119)
400 0.12 (0.133) 0.10 (0.064)

Table 7.3: Central mean subspace estimation summary of 1000 estimates under
model M2, using the semiparametric estimator from Huang and Chiang (2017).
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Conclusion and Discussion

In this thesis, we developed a semi-parametric estimation method to es-
timate the SDR model. In particular we estimate the dimension of the
smallest DR space using a cross-validation criterion, and then estimate the
central mean subspace and conditional mean simultaneously. The biggest
advantage of our estimation technique is that one can use the faster com-
putation of the estimation criterion to obtain asymptotic results equivalent
to the existing literature. In simulations the performance of the estimation
method has been demonstrated to be satisfactory with reasonable com-
putation time. The problem setting allowed us to use techniques from
semiparametric statistics, and we utilized results on semiparametric M-
estimation in order to prove our main result. The broadness and appli-
cability of the literature leaves a lot of avenues unexplored which might
be interesting for future research. The main one being the computational
complexity - which plays a rather small role in our theoretical develop-
ments of the method but is important for practical use. Due to the ex-
ponential growth of the computations in the number of dimensions, for
large d0, p or n problems are anticipated. When d0 is large, the curse of
dimensionality plays a role. A large value of p or n are typically seen in
big data settings. An efficient optimization algorithm is necessary to over-
come these computational difficulties. It might be of interest to generalize
the estimation of the central mean subspace to that of the central subspace.
Here one would use the same reasoning as we invoked in Chapter 3.2 in
order to derive the cross-validation criterion, and the same one used by
Huang and Chiang (2017). The semiparametric framework we introduced
in Chapter 6 could then be used to prove asymptotic results, accompanied
with the M-estimation theory discussed in Chapter 4.
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