
Statistical Learning Theory

Summer 2023

Thomas Nagler

Version: July 17, 2023

Contents
1. Introduction and overview 1

1.1. Statistical learning theory . 1
1.2. Scope of this course . 1
1.3. Limitations . 2
1.4. These notes . 2
1.5. Outlook . 2

2. Theoretical framework 5
2.1. Data, loss, and risk . 5
2.2. Examples . 6

2.2.1. Regression . 6
2.2.2. Classification . 8
2.2.3. Unsupervised learning . 9
2.2.4. And too many more . 10

2.3. The hypothesis class . 10
2.4. Empirical risk minimization (ERM) 11
2.5. Probably approximately correct (PAC) learning 12
2.6. There’s no free lunch . 13

3. Preliminary bounds on the risk 16
3.1. Risk decomposition . 16
3.2. Risk bounds . 17
3.3. The role of uniform convergence 18

4. Bounds for finite hypothesis classes 21
4.1. Main result . 21
4.2. The union bound . 22
4.3. Concentration of measure . 23

4.3.1. Motivation . 23
4.3.2. Basic tail bounds . 24
4.3.3. Hoeffding’s inequality . 25
4.3.4. Sub-Gaussian random variables* 27

5. Bounds for infinite hypothesis classes 28
5.1. McDiarmid’s inequality . 28
5.2. Rademacher complexity . 30

5.2.1. Definition and derivation 30
5.2.2. Interpretation and properties 33

ii

Contents

5.2.3. Empirical Rademacher complexity 36
5.3. Applications . 38

5.3.1. Penalized linear models 38
5.3.2. Interpreting bounds and learning from proofs 41
5.3.3. Ensembles . 42
5.3.4. Algorithms using basis approximation 43

5.4. Covering numbers and entropy 48
5.4.1. Definition . 48
5.4.2. Covering bound on the Rademacher complexity 50
5.4.3. Euclidean function classes 51
5.4.4. Chaining and the entropy integral 53
5.4.5. Applications . 56

5.5. Vapnik-Chervonenkis dimension 58
5.5.1. Some context . 58
5.5.2. Derivation . 58
5.5.3. Examples and Implications 59

6. Further topics 63
6.1. Fast rates . 63

6.1.1. Intuition . 63
6.1.2. Formal result . 64
6.1.3. When fast rates are possible 67
6.1.4. Application . 71

6.2. Approximation error . 72
6.2.1. Pice-wise constant functions 72
6.2.2. Exploiting higher-order smoothness 73
6.2.3. The curse of dimensionality 74
6.2.4. Exploiting sparsity . 75
6.2.5. The effectiveness of neural networks 77

6.3. Lower bounds and minimax risk 78
6.3.1. Motivation . 78
6.3.2. Definition . 79
6.3.3. Lower bounds for the minimax risk 80
6.3.4. Some examples . 82

7. Closing remarks 84

A. Common notation 86

B. Mathematical preliminaries 87
B.1. Basic probability . 87
B.2. O-notation . 87
B.3. Norms . 87
B.4. Elementary inequalities . 88

iii

1. Introduction and overview

1.1. Statistical learning theory
Advances in artificial intelligence are a key driver for our modern economy and
society. Much of this success can be attributed to machine learning (ML). In
machine learning, an algorithm sifts through large amounts of data to find patterns
that allow us to make predictions.

Machine learning is a field intersecting mathematics, statistics, and computer
science. This course is about statistical learning theory, so what does that mean?
The core of statistics is a probabilistic view of the world. Statisticians view
observed data as something that’s been generated through a random mechanism.
Whatever we compute from the data inherits this randomness, which induces
uncertainty. Understanding and controlling this uncertainty is the main problem
in statistics.

Statistical learning theory is all about understanding ML algorithms from that
perspective. When do algorithms (likely) work and why? When do they (likely)
fail? What can we possibly learn from data in the first place? To answer these
questions, we use fundamental laws of probability — similar to how a theoretical
physicist uses physical laws to understand physical phenomena.

In machine learning, this uncertainty shows most prominently in the difference
between an algorithm’s performance on training data (in-sample) and test data
(out-of-sample). Our ultimate goal is to have algorithms that predict new data
well on unseen data. However, we train our models on whatever (random!)
sample nature gives us. Sometimes we’re lucky and sometimes we’re not. When
an algorithm that performs well in-sample also does so out-of-sample, we speak
of generalization. The difference between in- and out-of-sample performance is
called generalization gap and itself random. Sometimes it’s smaller, sometimes it’s
larger. Understanding the factors that drive this gap and deriving mathematical
bounds for it are the key objective of statistical learning theory.

1.2. Scope of this course
On a high level, this course will teach you:

• The most important results and concepts in statistical learning theory.

• The probabilistic laws and mathematical tools to derive them.

1

1. Introduction and overview

As the name suggests, the course is theoretical in nature. Part of what makes
it interesting and fun is the beauty and power of the mathematics behind it.
There’s no need to be scared, a solid backround in real analysis and probability
is enough to appreciate the maths we’ll see. But we’re not doing theory just for
the sake of it:

“There is nothing more practical than a good theory.” — Kurt Lewin

An understanding of the fundamental mechanisms governing learning and gener-
alization is an invaluable asset in practice. The intuition we gain helps us design
algorithms, identify failure modes, and improve them.

At the end of this course, you should feel relatively comfortable reading theo-
retical papers in statistical learning. You’ll know most of the concepts they deal
with, what their results mean, and have an idea on how they are derived.

1.3. Limitations
The field of machine learning is vast and so is the underlying theory. Supervised,
semi-supervised, unsupervised learning, online learning, reinforcement learning,
generative models, and let’s not even start on the plethora of algorithms to solve
these problems. To not get lost in this jungle when building our understanding,
we need to limit the scope. In particular, you will not learn about

• tailored solutions to specific ML problems,

• new ML algorithms,

• optimization and computational techniques.

Nevertheless, the ideas and tools we develop are fundamental enough to transfer
to many settings and problems beyond those discussed in this course.

1.4. These notes
These lecture notes are meant to support the oral lectures during class. The
notes are more detailed than what is actually done in the latter. In class, we
focus on understanding and interpreting the main results and tools. I will often
omit or shorten mathematical arguments and proofs if additional detail wouldn’t
add much to our understanding. Reading the additional details in the notes is an
optional offer to interested students. The general rule is: what we don’t discuss
in class isn’t necessary for succeeding in this course.

1.5. Outlook
We start by introducing the formal statistical framework for our view on machine
learning. There are two key quantities:

2

1. Introduction and overview

generalization gap

approximation error

risk

0

5

10

15

20

0.0 0.1 0.2 0.3 0.4
model complexity

Figure 1.1.: The approximation-generalization trade-off: the more complex our
model, the smaller the approximation error, but the larger the gen-
eralization error.

• The empirical risk or training error Rn(h) of a predictor h quantifies its
performance on a specific training data of size n.

• The (population) risk or test error R(h) is its expected performance on
unseen data.

The empirical risk minimizer (ERM) is defined as

ĥ = arg min
h∈H

Rn(h),

where H is some collection of functions. Most ML algorithms can be framed as
(an approximation of) an ERM. We’ll see bounds of the form:1

R(ĥ) −Rn(ĥ) . C(H)√
n

(with high probability), (1.1)

where C(H) is some measure of the size or complexity of H. We’ll learn how
to arrive at such results and how to adequately measure the complexity C(H).
There are two important observations from (1.1). First, the gap decreases in
n, so more data is better (unsurprisingly). Second, the bound increases with
the size/complexity of H. So the simpler our model class H is, the smaller the
gap is. Defining h∗ = arg minh∈H R(h) as the best predictor in H. From bounds
on the generalization gap, we also get similar bounds on the estimation error
R(ĥ) −R(h∗). The key mathematical concepts we learn are:

• Concentration of measure: Bounds on the deviations between sample aver-
age and expectation |Xn − E[X]|.

• Several measures C(H) for the size/complexity of H.
1The notation . is used as “less than a constant times”.

3

1. Introduction and overview

empirical risk

risk

interpolation threshold
0

5

10

15

0.00 0.25 0.50 0.75 1.00
model complexity

Figure 1.2.: The double descent phenomenon: after passing the interpolation
threshold, performance increases with complexity.

The generalization gap and estimation error are not all we care about in practice.
If the risk R(h∗) is large, bounding the gap isn’t all that helpful. We also want
the gap between R(h∗) and the risk R(h0) of the best possible predictor h0 to
be small. Because the functions h∗ and h0 are deterministic, bounding this gap
is not a statistical problem but central to mathematical approximation theory,
which we only touch upon. In summary: the larger the set H, the smaller the
approximation error R(h∗) −R(h0) = minh∈H[R(h∗) −R(h0)]. This contrasts our
bound on the generalization gap in (1.1), where enlarging H hurts performance.
That’s the infamous bias-variance trade-off you probably already heard about,
see Fig. 1.1 for an illustration. We’ll discuss the approximation abilities and
complexity of some modern ML algorithms as well the role of regularization.
Further topics are refinements of the bounds and the mathematical limits of how
well/fast we can learn specific problems.

Current research in statistical learning theory is largely driven by the puzzling
success of deep learning. These models are so flexible that they can achieve
zero training error on almost any data set. This versatility suggests that their
complexity C(H) is huge, which makes the bound (1.1) vacuous. In practice,
however, adding more layers and neurons even seems to help generalization. This
phenomenon is known as double descent and illustrated in Fig. 1.2. It appears
that increasing the model size hurts performance only up until the point where
the model is so flexible that it can perfectly interpolate the data (zero training
error). From that point on, increasing the model size improves generalization!

Although the double descent phenomenon seemingly contradicts our previous
findings, the fundamental laws of probability are inevitable. We have to be more
careful with our bounds though. Double descent isn’t specific to deep learning
and has since been discovered (even theoretically) in algorithms as simple as
linear regression. The course ends with some recent results and open questions
along these lines.

4

2. Theoretical framework
Before we start developing our theory, we have to formalize what we mean by
machine learning. On a high level:

• we want to learn about some target function h0 : Z → O,

• by running an algorithm A on a training data set Dn = (Zi)n
i=1 ∈ Zn.

We hope that the algorithm produces a function ĥ = A(Dn) that is close to h0
in some practically meaningful sense. The output of the algorithm is often called
hypothesis in the statistical learning literature.

2.1. Data, loss, and risk
To justify this hope, we assume that the training data Z1, . . . , Zn are iid samples
from some probability measure P that somehow relates to the target function h0.

Example 2.1.1. In supervised settings, one observation Zi = (Yi, Xi) consists
of a label Yi ∈ Y and a feature vector Xi ∈ X . The standard objective is the
regression function h0(x) = EP [Y | X = x].

Remark 2.1.2. The iid assumption could be relaxed in several ways (time series
structure, distribution drift, etc.), but this would unnecessarily complicate our
analysis.

The next question is how we measure whether ĥ is close to h0. We use a general
decision-theoretic formulation.

Definition 2.1.3.

• The loss function is a map L : Z×O → R such that L(z, h(z)) measures
how well the hypothesis h does on the sample z.

• The risk R(h) = EP [L(Z, h(Z))] measures how well the hypothesis h
does on average.

Our goal is to find algorithms that produce hypotheses with small risks. The
function h0 is normally taken as the one that minimizes risk, h0 = arg minh R(h),
where the minimum is taken over all measurable functions h : Z → O. The
corresponding risk R0 = R(h0) is called Bayes risk and cannot be improved

5

2. Theoretical framework

mean distribution quantile

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4

0.0

0.5

1.0

1.5

0.0

2.5

5.0

7.5

0

1

2

3

4

h(x)

lo
ss

Figure 2.1.: Loss functions for regression problems with y = 2, y′ = 2.1, and
α = 0.8.

upon. The excess risk R(h) −R(h0) measures how much worse a hypothesis h
is compared to the Bayes risk.

Even though we are free to specify the loss function L, the risk R(h) depends
on the unknown (!) probability measure P . The risk is therefore not very useful
in practice. To approximate it by something we can compute in practice, we may
replace P with the empirical measure Pn.

Definition 2.1.4. The empirical risk is defined as

Rn(h) = 1
n

n∑
i=1

L(Zi, h(Zi)),

where the average is taken over the training data.

Remark 2.1.5. In supervised settings where we predict Y ∈ Y from X ∈ X , it is
more common to write the loss functions directly as a map L : Y × Y → R. This
should not cause any confusion and we will use both formulations interchangeably.

2.2. Examples
The setup so far is quite abstract, but for a good reason. It allows us to simul-
taneously cover many interesting problems in machine learning. Let’s see some
examples.

2.2.1. Regression
Consider a supervised learning setup, where Z = (Y,X) ∈ R× X and we want
to predict a numeric label Y from features X. The loss functions to come are
shown in Fig. 2.1

6

2. Theoretical framework

Example 2.2.1 (Mean regression). To learn the mean regression function h0(x) =
EP [Y | X = x], one most commonly uses the square-loss

L(y, h(x)) = (y − h(x))2.

The corresponding risk (also called L2-loss or mean squared error) is

R(h) = E[(Y − h(X))2].

In the left panel of Fig. 2.1, we see that predictions h(x) away from the actual
label y = 2 are penalized quadratically, leading to a higher risk.

Indeed, the square loss lets us identify h0: One can verify that it holds h0 =
arg minh R(h), where the minimum is taken over all functions h : X → R.

We may also want to learn about other aspects of the predictive distribution.

Example 2.2.2 (Distribution regression). Suppose we want to learn the condi-
tional distribution

h0(x) = P (Y ≤ y′ | X = x) = EP [1(Y ≤ y′) | X = x],

where y′ is some fixed threshold. The formulation as an expectation on the far
right reveals that this problem is no different from mean regression. We can use
the loss

L(y, h(x)) = (1(y ≤ y′) − h(x))2

and corresponding risk

R(h) = E[(1(Y ≤ y′) − h(X))2].

The loss function is shown in the middle panel of Fig. 2.1 for y = 2 and y′ = 2.1,
so 1(y ≤ y′) = 1. The loss penalizes every h(x) away from 1. If y ≤ y′, the loss
function would shift and penalize deviations from 0.

Example 2.2.3 (Quantile regression). We have Z = (Y,X) ∈ R → X and want
to learn the conditional quantile function

h0(x) = Q(α | x) = inf{y : P (Y ≤ y | X = x) ≤ α},

where α is some fixed quantile level. We can use the pinball loss

L(y, h(x)) = (1 − α)(h(x) − y)1{h(x) > y} + α(y − h(x))1{h(x) ≤ y}.

The quantile function Q(α | ·) indeed minimizes the corresponding risk. The
special case α = 0.5 is median regression. The loss function in Fig. 2.1 penalizes
h(x) values away from y = 2, but asymmetrically. The slopes of the straight lines
are exactly −α (left wing) and 1 − α (right wing). The quantile level α = 0.8 is

7

2. Theoretical framework

0

1

2

3

−3 −2 −1 0 1
h(x)

lo
ss

type

0−1

square

hinge

2 x logistic

Figure 2.2.: Loss functions for classification problems with y = −1.

closer to 1, so we expect fewer exceedances and therefore penalize them harder.

2.2.2. Classification
In binary classification, we have Z = (Y,X) ∈ {−1, 1} × X and want to learn
the function that best predicts Y from X. Let’s assume that h : X → R has
real-valued output. To predict a label Y ∈ {−1, 1} from X, we take sign h(X)
where

sign y =

1, for y ≥ 0,
−1, for y < 0.

Example 2.2.4 (0-1-loss). The most natural is the 0-1-loss and misclassifi-
cation risk

L(y, h(x)) = 1{y 6= sign h(x)}, R(h) = P{y 6= sign h(x)}.

Remark 2.2.5. The function h0(x) = 2P{Y = 1 | X = x} − 1 = arg minh R(h)
is called Bayes classifier. It classifies a sample as 1 if P{Y = 1 | X = x} > 1/2
and −1 otherwise. The corresponding Bayes risk R0 = R(h0) can be anywhere
between 0 and 1/2. If it is close to 1/2, we can’t do any better than random
guessing; the feature X doesn’t provide any information about Y and Y itself has
P (Y = 1) = 1/2. If R0 = 0, we call the setting realizable: it is possible to find a
classifier that never misclassifies.

While the 0-1-loss is a natural choice, it has an important deficiency. It is a
discontinuous function that effectively turns our hypotheses into functions with
binary output. This is both theoretically and practically annoying. For example,
optimizing the empirical risk becomes a combinatorial problem that is NP-hard.

8

2. Theoretical framework

In practice, we therefore also consider other, so-called surrogate loss functions.

Example 2.2.6 (Surrogate losses). The most popular surrogate losses are:

• Square loss: L(y, h(x)) = (y − h(x))2. Treats classification as a mean
regression problem, essentially ignoring the fact that we constrain output to
{−1, 1}.

• Hinge loss: L(y, h(x)) = max(1 − yh(x), 0). Especially popular with
Support Vector Machines, where the quantity yh(x) has a geometric inter-
pretation.

• Logistic loss: L(y, h(x)) = ln(1 + e−yh(x)). The risk is then proportional
to the negative log-likelihood for the logistic model

P (Yi = 1 | Xi = x) = 1
1 + e−h(x) .

Note that all surrogate losses are convex upper bounds to the 0-1-loss. For
multiclass classification, Y = {1, . . . , K}, we can take h : X → RK and predict
the class k̂ = arg max1≤k≤K hk(x). The loss functions above can be adapted in
several ways, but let’s not get too deep in the woods.

2.2.3. Unsupervised learning
Our framework also covers unsupervised problems. Here, the data Z = X contain
no labels and we hope to learn something useful about the distribution of X.
Two popular examples are density estimation and clustering.

Example 2.2.7. Suppose we want to learn the density h0 = pZ of Z and H
is some collection of density functions. We normally solve this with maximum
likelihood estimation. Framed in ML lingo: we consider the log loss

L(z, h(z)) = − ln h(z).

The corresponding risk R(h) = E[− ln h(Z)] is called negative cross-entropy.
Minimizing it is equivalent to minimizing the Kullback-Leibler divergence between
h and pZ.

In clustering problems, we want to find groups of observations that are in
some way similar. Similarity has no canonical definition, so there are plausible
ways to frame this. One is to assume that pZ = α1p1 + · · · + αKpK is a mixture
density, each representing a cluster. Finding the mixture parameters then brings
us back to density estimation. The similarity concept in K-means clustering has
a more geometric flavor. To cluster observations, we partition the feature space
into disjoint sets Z1, . . . ,ZK . Our hypothesis h : Z → {1, . . . , K} assigns each

9

2. Theoretical framework

observation its cluster. Different hypotheses correspond to different partitions of
Z. As a loss, we take the squared distance from z to the cluster center µh(Zk):

L(z, h(z)) =
K∑

k=1
1{h(z) = k}‖z − µh(Zk)‖2.

To minimize the risk, it then suffices to find the center parameters µh(Zk).

2.2.4. And too many more
We stop with the examples, although there are many more. In a way, there are
too many already. They served well to illustrate the generality and power of
what’s to come. But they are more distracting than helpful for what we want to
achieve. Most of the time, we shall stick to the general formulation in Section 2.1.
This allows us to discover and develop fundamental principles that apply to all
the examples.

2.3. The hypothesis class
Let’s finally talk about the algorithm A. Formally, it is a map1 A : Zn → OZ

that takes a data set Dn of arbitrary size n and maps it to a hypothesis ĥ ∈ OZ .
Here, OZ is the set of all function h : Z → O.

Let H be the collection of all hypotheses the algorithm can produce. It will
play an important role. Some examples for X = Rd and O = R are:

Example 2.3.1. Linear functions:

H =
{
h : X → R : x 7→ β>x, β ∈ B ⊂ Rd

}
.

Example 2.3.2. Basis expansions:

H =
{
h : X → R : x 7→

K∑
k=1

βkφk(x), β ∈ B ⊂ RK

}
,

where (φ1, . . . , φK) is a basis for H (like splines) and β are the basis coefficients.

Example 2.3.3. Partition functions:

H =
{
h : X → R : x 7→

K∑
k=1

βk1(x ∈ Xk), β ∈ B ⊂ RK ,X =
K⋃

k=1
Xk

}
.

1Technically, even a family of maps (one for each n), but that’s not an important detail.

10

2. Theoretical framework

The functions produced by (boosted/bagged) trees can be written that way.

Example 2.3.4. Neural networks:

H =
{
h : X → R : x 7→ W1σ(W2σ(· · ·σ(WMx))), Wk ∈ Wk ⊂ Rpk×pk+1

}
,

where the m-th row of Wk are the bias and weights for the m-th neuron of the
k-th layer.

2.4. Empirical risk minimization (ERM)
Optimally, we would construct an algorithm that minimizes the risk R(ĥ). But
the risk depends on the true measure P which we don’t know. To construct
algorithms, we can simply replace it with the empirical measure Pn = n−1∑n

i=1 δZi
.

By the law of large numbers, the empirical risk

Rn(h) = 1
n

n∑
i=1

L(Zi, h(Zi))

approximates R(h) asymptotically. To construct algorithms, we may therefore
minimize the empirical risk Rn.

Definition 2.4.1. The empirical risk minimizer is defined as

A(Dn) = ĥERM = arg min
h∈H

Rn(h). (2.1)

Many modern ML algorithms can be framed that way, at least idealistically. This
makes the ERM a useful algorithm to study.

The ERM is a theoretical construct, however. In all examples above, the
minimum in (2.1) is over sets H containing uncountably many hypotheses. We
can’t simply try them all and pick the best. Instead, we have to run a numerical
optimization algorithm. Quite often, such algorithms find a hypothesis close to
the true ERM. For deep neural networks, the global minimizer is neither unique
nor easy to find, and different optimizers find noticeably different hypotheses.
Other methods, like gradient boosting or random forests, find hypotheses in
different ways. So although the ERM is a good concept to have in mind, the
following developments will allow for more general algorithms.

Even in an idealistic view, one must be careful with ERM. If the class H is
too large, the ERM is likely to overfit a given data set Dn. Overfitting means
that the algorithm learns patterns that can be attributed purely to random noise.
Consider for example a regression task with square loss. If H = RZ contains all
functions from Z to R, there are infinitely many h ∈ H with Rn(h) = 0. However,

11

2. Theoretical framework

the test loss R(h) of such functions can be arbitrarily large. To avoid overfitting,
we must either restrict the hypothesis set H, or use an algorithm that picks a
‘good’ h ∈ H.

2.5. Probably approximately correct (PAC) learning
Let’s now discuss which results we are after. We like hypotheses h ∈ H that have
small risk R(h). Here, small means that it’s not much larger than the possible
best risk R0 = minh∈UZ R(h). We may call a hypothesis h with R(h) − R0 ≤ ε
approximately correct.

To generate such hypotheses, we run an algorithm A on a data set Dn. But
the data set Dn is random and so is the hypothesis ĥ = A(Dn) an algorithm
spits out. Consequently, also the risk R(f̂) is a random variable. It would be too
much to ask that an algorithm always returns hypotheses with small risk. But
it should at least do so with high probability (over the randomness in Dn). Let’s
formalize this.

Definition 2.5.1. An algorithm A is called probably approximately cor-
rect (PAC), if for every ε, δ > 0 and all probability measures, there exists a
training set size n = n(ε, δ) such that

P{R(ĥ) −R0 > ε} ≤ δ.

An algorithm is PAC, if achieves risk arbitrarily close to the Bayes risk R0, with
arbitrarily high probability, if we run it on data sets of sufficient size. This sample
size, n(ε, δ), is called the sample complexity of the algorithm. We want it to be
small of course. Another way to read the inequality above is: with probability at
least 1 − δ, we have

R(ĥ) −R0 ≤ ε.

We can also frame PAC-learning by reversing the roles of n and ε: For every
δ > 0, there is a sequence εn(δ) such that for every n ∈ N and probability at
least 1 − δ.

R(ĥ) −R0 ≤ εn(δ).

This may be a more natural way of thinking. The sequence εn is called convergence
rate and quantifies how fast the algorithm achieves small risk as n grows. This
formulation is slightly stronger because it must hold for any n, not just large
ones. We shall call any of the inequalities about a PAC bound.

Definition 2.5.1 compares R(ĥ) with the Bayes risk, the absolute best we can
aim for. This aim may be too ambitious in general. In the following section,
we’ll prove that no algorithm can be universally PAC for all tasks. If we assume
ĥ ∈ H, it can also make sense to compare to R(ĥ) to the best achievable over H,
i.e. R(h∗) = minh∈H R(h).

12

2. Theoretical framework

Definition 2.5.2. A hypothesis class H is called PAC-learnable if there
exists an algorithm A such that for all probability measures and ε, δ > 0, there
exists a sample size n = n(ε, δ) such that ĥ = A(Dn), n ≥ N , satisfies

P{R(ĥ) −R(h∗) > ε} ≤ δ.

The easiest example of a PAC-learnable class is a set H = {h} with only one
element. In that case, R(ĥ)−R(h∗) = 0 with probability 1. We’ll see much richer
PAC-learnable classes later on.

2.6. There’s no free lunch
We should understand the choice of H as an inductive bias: a rough idea of how
the function h0 looks like. Is it linear? Is it smooth? Can it be composed of
simple functions? Such inductive biases are important, even necessary in some
sense. This is formalized by no-free-lunch theorems, which can be summarized as
follows:

For every algorithm A, there is a task on which it fails.

Here, ‘task’ essentially means the unknown distribution P , including the ‘true
hypothesis’ h0 = arg minh R(h).

The no-free-lunch principle does not mean that there are tasks for which no
algorithm succeeds. But if we have an algorithm that does well on some tasks,
we can necessarily find tasks for which it does poorly. An important consequence
is that there is no universal ranking of algorithms. Which algorithms perform
well is intricately linked to the set of tasks we test them on. Let’s see a simple
variant of such theorems.

Theorem 2.6.1. Let R(h) = P{Y 6= sign h(X)} be the misclassification risk
and A : ({−1, 1} × X)n → RX be an arbitrary algorithm. Then for every n,
there exists a distribution P and another algorithm B, such that

E[R(A(Dn))] ≥ 1
4 and E[R(B(Dn))] = 0,

where the expectations are over the sample Dn
iid∼ P .

Remark 2.6.2. The number 1/4 is somewhat arbitrary and can be made arbi-
trarily close to 1/2 by adapting the proof.

The theorem states that for any sample size and algorithm A, we can find a ‘bad’
task. On average, the algorithm misclassifies at least a quarter of fresh samples.
This isn’t because the task is hard per se, however. There does exist an algorithm
B achieving zero misclassification risk (i.e., the task is realizable).

13

2. Theoretical framework

An important subtlety is that we can choose the task depending on the sample
size, and the algorithm B depending on the task. Indeed, we do so in the proof
ahead. Its core idea is as follows. For any finite data set Dn, the algorithm A
only has information for those feature values x present in the data set. Whatever
the algorithm does to extrapolate on unseen feature values, there is a task that
calls for the opposite. Let’s make this formal.

Proof of Theorem 2.6.1. Let X ′ ⊂ X be a set with |X ′| = 2n and PX be the
uniform distribution over X ′. We consider tasks where there’s a deterministic
relationship between label Y and feature X, i.e., Y = f(X) for some function
f : X ′ → {−1, 1}. Denote the corresponding joint distribution for (Y,X) as Pf .
A data set Dn

iid∼ Pf can then be written as Dn = (f(S), S) for some S ∈ X n.
Let’s also assume that h : X → {−1, 1} for simplicity.

Fixing S, any task f has a complementary task

f c
S(x) =

f(x), for x ∈ S

−f(x), for x /∈ S.

On x /∈ S, any hypothesis h must now misclassify one of the tasks:

1{f(x) 6= sign h(x)} + 1{f c
S(x) 6= sign h(x)} ≥ 1.

Then using that PX is uniform over X ′ (see exercises),

Rf (h) +Rfc
S
(h) ≥ 1

2 .

We have shown the following: for any data set, we can find two tasks that may
have generated it, but any hypothesis must fail on one of them. It remains to
take the expectation over data sets.

Let S1, . . . , SM ∈ X n be all the M =
(

2n
n

)
possible size n-tuples from X ′ and

write hf,m = A(f(Sm), Sm). Because each of the Sm is equally likely,

E
Dn

iid∼ Pf
[Rf (A(Dn))] = 1

M

M∑
m=1

Rf (hf,m).

Also define F = −1, 1X ′ as the set of all possible tasks and note that this set is
finite (|F| = 22n). Because the maximum is larger than the average, we get

max
f∈F

E
Dn

iid∼ Pf
[Rf (A(Dn))] ≥ 1

|F|
∑
f∈F

E
Dn

iid∼ Pf
[Rf (A(Dn))]

= 1
M

M∑
m=1

1
|F|

∑
f∈F

Rf (hf,m)

= 1
M

M∑
m=1

1
|F|

∑
f∈F

Rf (hf,m) +Rfc
Sm

(hf,m)
2 ≥ 1

4 .

14

2. Theoretical framework

The second to last equality holds because for any set S, F = {f c
S : f ∈ F}. We

have shown that there is a task f ∈ F ; for which E[Rf (A(Dn))] ≥ 1/4 as claimed.
Finally, define B as the algorithm always returning this f . Because Y = f(X)
with probability 1, it holds Rf (B(Dn)) = Rf (f) = 0 irrespective of Dn.

As a corollary, we obtain that not all classes H are PAC-learnable. This reifies
the importance of inductive biases.

Corollary 2.6.3. The set H = {−1, 1}X of all measurable functions X →
{−1, 1} is not PAC-learnable.

Proof. Recall the setting of Theorem 2.6.1. Because Y = h(X) is deterministic,
the best achievable risk is R∗ = 0. By definition of the 0-1-loss, the risk R(h) of
any hypothesis lies in the interval [0, 1]. Now for any random variable R ∈ [0, 1],
it holds

E[R] = E[R1{R > 1/8}] + E[R1{R ≤ 1/8}]

≤ E[1{R > 1/8}] + 1
8E[1{R ≤ 1/8}]

= P{R > 1/8} + 1
8(1 − P{R > 1/8})

= 7
8P{R > 1/8} + 1

8

If further E[R] ≥ 1/4 as in Theorem 2.6.1, we get

1
4 ≤ 7

8P{R > 1/8} + 1
8 ⇔ P{R > 1/8} ≥ 1

7 .

Hence, for any algorithm, there is a task h ∈ H, for which the risk is larger than
1/8 with probability at least 1/7. Hence, no algorithm is PAC for H.

15

3. Preliminary bounds on the risk

3.1. Risk decomposition
A central question in this course is: when do algorithms have small (excess) risk?
To answer this, we want to establish PAC bounds such as

R(ĥ) −R0 ≤ εn(δ) w.p. at least 1 − δ.

A key ingredient to arriving at and understanding such results is a decomposition
of the risk. Let H be the set of all hypotheses the algorithm can produce and
define the best hypothesis in class as h∗ = arg minh∈H R(h). We have:

R(ĥ) −R0 = R(ĥ) −R(h∗)︸ ︷︷ ︸
estimation error

+R(h∗) −R(h0)︸ ︷︷ ︸
approximation error

. (3.1)

The excess risk is split into two parts — one random, one deterministic (illustrated
in Fig. 3.1). The estimation error is the random part. The randomness is driven
by the data set Dn that leads to f̂ = A(Dn). The error is small if the algorithm
likely picks hypotheses close to h∗, the best in class. This is easy when there are
only a few hypotheses to choose from:

The smaller H, the smaller the estimation error.

The approximation error is deterministic. It mainly depends on the richness of
H. If it is rich enough to contain a hypothesis h∗ close to h0, the error is small:

The larger H, the smaller the approximation error.

Remark 3.1.1. This is a good time to emphasize that ‘size’ is not to be taken
literally. All interesting hypothesis classes H have infinitely many elements, often
uncountably many. What we really mean is how diverse the functions contained
in H are. More accurate terms for H’s ‘size’ are complexity, capacity, or
richness of the class.

The complexity of H creates tension between approximation and estimation
error. For successful ML applications, the two forces have to be balanced carefully.
This is what hyperparameter tuning is all about. How many levels should my
regression tree have? How many layers the DNN? How much should I regularize
the empirical risk in my algorithm? All of this calibrates the complexity of H.
The optimal tuning parameters are those that strike the best balance.

16

3. Preliminary bounds on the risk

estimation
error

approximation
error

estimation
error

approximation
error

Figure 3.1.: The effect of the size of the hypothesis set on estimation and approx-
imation error.

The estimation error normally decreases in the sample size n. More data means
more information and much of the randomness can be averaged out. To maintain
the right balance, we should thus increase the complexity of H with n. We rarely
make this explicit, because we are after bounds that are valid for any n. It is
nevertheless worth keeping in mind.

The estimation error will be our main focus because it is more interesting from
a statistical perspective. The approximation error is deterministic and a core
subject of the mathematical field of approximation theory. We’ll see a few results
in that direction later in this course. The key takeaway is simple: the larger H,
the smaller the approximation error.

3.2. Risk bounds
The following result will be useful for bounding the estimation error R(ĥ)−R(h∗).

Proposition 3.2.1. Suppose the algorithm produces hypotheses with small
empirical risk in the sense that Rn(ĥ) −Rn(h∗) ≤ 0. Then

R(ĥ) −R(h∗) ≤ sup
h∈H

[
R(h) −Rn(h)

]
− [R(h∗) −Rn(h∗)].

Proof. By adding and subtracting terms, we get

R(ĥ) −R(h∗) = R(ĥ) −Rn(ĥ) +Rn(ĥ) −Rn(h∗) +Rn(h∗) −R(h∗)
≤ R(ĥ) −Rn(ĥ) +Rn(h∗) −R(h∗)
≤ sup

h∈H

[
R(h) −Rn(h)

]
− [R(h∗) −Rn(h∗)],

because Rn(ĥ) −Rn(h∗) ≤ 0 (1st inequality) and ĥ ∈ H (2nd inequality).

Remark 3.2.2. The proposition imposes an assumption on the algorithm: Rn(ĥ)−
Rn(h∗) ≤ 0. Intuitively speaking, it means that the algorithm adapts to the data
at least to some degree. Its training error Rn should be smaller than that of

17

3. Preliminary bounds on the risk

the fixed hypothesis h∗, which does not adapt to the training data at all. The
condition is trivially satisfied for the ERM ĥERM = arg minh∈H Rn(f). But it’s
equally plausible for most other methods that use the empirical risk as a training
criterion in some way.

The second term R(h∗) − Rn(h∗) only involves a fixed hypothesis h∗. It is of
order O(1/

√
n) by the law of large numbers (or a variance calculation). The term

suph∈H[R(h) −Rn(h)] is the maximal difference between empirical risk Rn and
population risk R over all elements of H. As apparent from the proof, it comes
from bounding another interesting quantity.

The generalization gap is the difference between test and training error:

R(ĥ) −Rn(ĥ) ≤ sup
h∈H

[
R(h) −Rn(h)

]
.

This generalization bound has a more practical flavor. The empirical risk
Rn(ĥ) is something we observe. If we can make the upper bound small, say
suph∈H[R(h) −Rn(h)] ≤ ε, we can extrapolate from the training error to the test
error. Rearranging the inequality above yields

R(ĥ) ≤ Rn(ĥ) + ε.

So the actual risk of ĥ is at most ε larger than the empirical risk.
The uniform difference suph∈H[R(h) − Rn(h)] bounds both the estimation

error and the generalization gap. It is thus key to a theory of statistical learn-
ing. In much of the following, we derive and discuss bounds on this quantity.
These bounds then immediately translate to bounds of the estimation error and
generalization gap.

3.3. The role of uniform convergence
The term suph∈H[R(h) −Rn(h)] is a random quantity. Recall that

Rn(h) = 1
n

n∑
i=1

L(Zi, h(Zi)), R(h) = EZ∼P [L(Z, h(Z))].

The randomness comes from the empirical risk Rn, which depends on the random
data set Dn = (Zi)n

i=1. Because R(h) −Rn(h) is the difference between average
and expectation, the law of large numbers implies

R(h) −Rn(h) →P 0 as n → ∞,

or, by definition of convergence in probability,

R(h) −Rn(h) ≤ ε w.p. at least 1 − δ, (3.2)

18

3. Preliminary bounds on the risk

for all ε, δ > 0 and n large enough. The law of large numbers can be seen as one
of the fundamental laws of statistics. It motivates and justifies most statistical
methods. Without it, learning from data would be impossible.

Equation (3.2) holds for every h, but that’s not enough. For suph∈H[R(h) −
Rn(h)] to be small, we need Rn(h) to converge to R(h), uniformly over h ∈ H:

We say that Rn −R converges uniformly over H, if

sup
h∈H

[
R(h) −Rn(h)

]
→P 0,

Uniform convergence of R(h) −Rn(h) is the core problem of empirical process
theory (Van der Vaart and Wellner, 1996). For any function f , denote the sample
average and expectation as

Pn(f) = 1
n

n∑
i=1

f(Zi), P (f) = EZ∼P [f(Z)].

In this notation, the law of large numbers is Pn(f) − P (f) →P 0.

Definition 3.3.1. A collection of differences {P (f) −Pn(f) : f ∈ F} is called
empirical process indexed by F .

Defining (L ◦ h)(z) = L(z, h(z)), we see that

R(h) −Rn(h) = P (L ◦ h) − Pn(L ◦ h),

and, thus,

sup
h∈H

[
R(h) −Rn(h)

]
= sup

`∈L

[
P (`) − Pn(`)

]
,

where
L = L ◦ H = {L(·, h(·)) : h ∈ H}

is the loss class. Thus, R(h) −Rn(h) converges uniformly, when a uniform law
of large numbers holds:

sup
`∈L

[
P (`) − Pn(`)

]
→P 0.

We’ll shoot higher than this though. The law of large numbers only establishes
convergence, but it doesn’t say anything about sample complexity or convergence
rates. For deeper insights, we’ll use concentration inequalities, which are the
subject of the following chapter.

Remark 3.3.2. The reframing in terms of the empirical process {Pn(`)−P (`) : ` ∈
L} shows that the complexity of L is what really matters. But since L is fixed, L’s

19

3. Preliminary bounds on the risk

and H’s complexity are almost equivalent. We’ll see some theoretical justification
later on.

20

4. Bounds for finite hypothesis
classes

4.1. Main result
Recall our preliminary bound for the generalization error:

R(ĥ) ≤ Rn(ĥ) + sup
h∈H

[
R(h) −Rn(h)

]
.

To bound the risk on the left, our goal is to provide high probability bounds on
the supremum on the right. In particular, we shall prove the following result.

Theorem 4.1.1. Suppose that |L(z, h(z))| ≤ B < ∞ for all z ∈ Z and
|H| < ∞. Then

sup
h∈H

[
R(h) −Rn(h)

]
≤ B

√
2 ln(|H|) + 2 ln(1/δ)

n
w.p. at least 1 − δ.

Some observations:

• As n → ∞, the right hand side decreases as O(1/
√
n). This rate is the

same as in the central limit theorem. The above result is non-asymptotic,
though. It is valid for any n.

• The probability threshold δ appears logarithmically in the bound. Because
δ 7→

√
ln(1/δ) is a decreasing function, the more certain we want to be

(small δ), the larger the bound.

• The upper bound of the loss function, B, shows as a constant factor. For
classification, B = 1. For regression with square loss, B is only bounded if
the data are.

• The cost of taking the sup over |H| functions is the ln(|H|) term. The more
functions are contained in H, the looser is our bound. The bound increases
only very slowly in |H|.

Let’s discuss the assumptions of the theorem. If the loss function L is un-
bounded, we require the data Zi to be bounded. This is a strong assumption,
many interesting random variables are unbounded. Most results we develop in
this course can be generalized to unbounded random variables — at the cost of

21

4. Bounds for finite hypothesis classes

additional assumptions on their moments and unnecessary complications in the
proofs.
In this course, we mostly assume that random variables are bounded. It allows
us to avoid distractions without losing anything in terms of insight.

The second assumption is that H contains only finitely many hypotheses. Al-
though the bound increases only logarithmically in |H|, it is vacuous for most
interesting examples (including all in Section 2.3). But don’t worry, we’ll get to
infinite classes.

Proving Theorem 4.1.1 serves a didactical purpose. So far, we have set a
theoretical framework. It’s time to develop a mathematical toolkit. We essentially
need two fundamental laws of probability: the union bound and concentration of
measure. The first controls a maximum of random variables, and the second the
isolated deviations [R(h) −Rn(h)].

4.2. The union bound
The union bound is a basic inequality for the probability of union of events.
Depending on the field, the union bound is also known as Boole’s inequality or
Bonferroni inequality.

Theorem 4.2.1 (Union bound). For any countable set of events E1, E2, . . . ,

P
(∞⋃

k=1
Ek

)
≤

∞∑
k=1

P(Ek).

Remark 4.2.2. The bound also applies to finitely many events E1, . . . , EK, by
setting Ek = ∅ for all k > K.

The union bound is useful because it gives us control of maxima of random
variables.

Corollary 4.2.3. It holds,

P
(

max
1≤k≤K

Xk > ε

)
≤ K max

1≤k≤K
P(Xk > ε).

Proof.

P
(

max
1≤k≤K

Xk > ε
)

= P
(

K⋃
k=1

{Xk > ε}
)

≤
K∑

k=1
P(Xk > ε) = n max

1≤k≤K
P(Xk > ε).

Let’s apply this to our statistical learning problem. Enumerating the hypotheses
h1, . . . , hK with K = |H| and substituting Xk = Rn(hk) −R(hk) gives

22

4. Bounds for finite hypothesis classes

P
(

sup
h∈H

[
R(h) −Rn(h)

]
> ε

)
≤ K max

1≤k≤K
P
(
Rn(hk) −R(hk) > ε

)
. (4.1)

We want the right-hand side to vanish as n → ∞. By the law of large numbers,

max
1≤k≤K

P(Rn(hk) −R(hk) > ε) → 0 as n → ∞.

Theorem 4.1.1 is much more precise however. It is non-asymptotic and quantifies
the effects of sample size an n and the number of hypotheses K = |H|. To get
such deep insights, we need better tools.

4.3. Concentration of measure
4.3.1. Motivation
The law of large numbers (LLN) is a fundamental principle in statistics. It
states: as the sample size increases the sample average of independent random
variables, a random variable, converges in a probabilistic sense to the expectation,
a deterministic quantity. We can also say that the average concentrates around
the expectation for large n. The LLN is the most basic description of a more
general phenomenon: concentration of measure.

Denote the empirical measure by Pn and the true probability measure by
P . The sample average and expectation can then be written as the Lebesgue
integrals1

Xn = 1
n

n∑
i=1

Xi =
∫
x dPn(x) and E[X] =

∫
x dP (x).

The law of large numbers Xn →P E[X] is a consequence of the empirical mea-
sure Pn concentrating around P in an appropriate sense. Key to this is the
independence of the random variables.2

The LLN only establishes that concentration takes place and says nothing about
its tightness or speed. This is where concentration inequalities come in. They
bound the probability of deviations between sample average and expectation:

P
{∣∣∣∣∣ 1n

n∑
i=1

Xi − E[X]
∣∣∣∣∣ > t

}
≤ δn.

1In that sense, the sample average is nothing else than an expectation with respect to the
empirical measure.

2The law of large numbers also holds if dependence is sufficiently weak. Roughly speaking,
we require that Xi and Xj become almost independent when the gap |i − j| increases. This
is beyond the scope of this course, however.

23

4. Bounds for finite hypothesis classes

In many interesting settings, these probabilities decay exponentially fast in n.3
Because the decay is so quick, we will be able to aggregate such bounds across
huge numbers of hypotheses. This eventually allows us to get uniform control
over the empirical process, but let’s not get ahead of ourselves.

4.3.2. Basic tail bounds
We first discuss some basic probability bounds, some of which you should already
know.

Theorem 4.3.1 (Markov’s inequality). For any random variable X ≥ 0 and
t > 0,

P(X ≥ t) ≤ E[X]
t

.

Proof. We calculate

E[X] =
∫ ∞

0
xdP (x) ≥

∫ ∞

t
xdP (x) ≥ t

∫ ∞

t
dP (x) = tP(X ≥ t).

The theorem is more powerful than it may look at first sight. Other than
being non-negative the random variable X is arbitrary. Let’s discuss some useful
implications.

Corollary 4.3.2 (Moment inequalities). For any random variable X, k ∈ N,
and t > 0,

P(|X − E[X]| ≥ t) ≤ E[|X − E[X]|k]
tk

.

Proof. Because φ(t) = |t| is strictly increasing on [0,∞),

P(|X − E[X]| ≥ t) = P
(
|X − E[X]|k ≥ tk

)
.

Now apply Markov’s inequality (Theorem 4.3.1).

The special case k = 2 is known as Chebyshev’s inequality. This corollary relates
the tail of the distribution of X to its (centralized) moments E[|X − E[X]|k].
The more of these moments exist, the faster the decay of the tail probabilities
P(|X − E[X]| ≥ t) for t → ∞. However, the decay is polynomial in t.

Another useful version arises with φ(t) = exp(λt) for some λ > 0.

Corollary 4.3.3 (Chernoff bounds). For any random variable X, and λ, t > 0,

P(X − E[X] ≥ t) ≤ e−λtE
[
eλ(X−E[X])

]
.

3In that case, concentration inequalities are sometimes referred to as exponential inequalities.

24

4. Bounds for finite hypothesis classes

Proof. The function φ(t) = exp(λt) is increasing and eλ(X−E[X]) is a positive
random variable. Thus, Markov’s inequality yields

P(X − E[X] ≥ t) = P
(
eλ(X−E[X]) ≥ et

)
≤ e−λtE

[
eλ(X−E[X])

]
.

The termMX(λ) = E[exp{λ(X−E[X])}] is also known as the moment generating
function. IfMX(λ) exists for some λ > 0, the Chernoff bound implies exponential
tail decay. This will be key for sharp concentration inequalities. An important
special case are bounded random variables.

Lemma 4.3.4 (Hoeffding’s lemma). For any random variable X with |X| ≤ B
almost surely and λ > 0,

E
[
eλ(X−E[X])

]
≤ exp

(
λ2B2

2

)
.

Now we have the tools we need to study concentration of measure.

4.3.3. Hoeffding’s inequality
Suppose X1, . . . , Xn ∈ [−B,B] are iid random variables. We are looking for
tail bounds for the difference between sample average Xn and its expectation
E[Xn] = E[X]. The Chernoff bound (Corollary 4.3.3) gives us a tail bound with
exponential decay in t. To turn this into exponential decay in n, we have to
exploit the observations’ independence.

Theorem 4.3.5 (Hoeffding’s inequality). For iid random variables
X1, . . . , Xn ∈ [−B,B] and all t > 0,

P
(
E[X] −Xn ≥ t

)
≤ exp

(
− nt2

2B2

)
.

Proof. For any λ > 0, the Chernoff bound gives

P
(
Xn − E[X] ≥ t

)
≤ e−λtE

[
eλ(Xn−E[X])

]
= e−λtE

[
e
∑n

i=1 λ(Xi−E[X])/n
]

= e−λtE

[
n∏

i=1
eλ(Xi−E[X])/n

]

= e−λt
n∏

i=1
E
[
eλ(Xi−E[X])/n

]
= e−λtE

[
eλ(X−E[X])/n

]n
,

where we used independence and identical distribution of X1, . . . , Xn in the last
two steps. The random variable Z = (X − E[X])/n is bounded by B/n. Using

25

4. Bounds for finite hypothesis classes

Hoeffding’s lemma (Lemma 4.3.4), we obtain

E
[
eλ(Xi−E[X])/n

]n
≤ exp

(
λ2(B/n)2

2

)n

= exp
(
λ2B2

2n

)
.

Substituting in the previous display gives

P(Xn − E[X] ≥ t) ≤ exp
(

−λt+ λ2B
2

2n

)
.

Since λ was arbitrary, we can choose the one that minimizes the right-hand side.
The exponential function is increasing, so we can simply minimize its exponent.
Setting its derivative to zero gives

−t+ λB2

n
= 0 ⇔ λ = nt

B2 .

Substituting this value yields

P(Xn − E[X] ≥ t) ≤ exp
(

− nt

B2 t+
[
nt

B2

]2
B2

2n

)

= exp
(

−nt2

B2 + nt2

2B2

)

= exp
(

− nt2

2B2

)
.

This also implies

P
(
E[X] −Xn ≥ t

)
= P

(
−Xn − E[−X] ≥ t

)
≤ exp

(
− nt2

2B2

)
.

Let’s see how Hoeffding’s inequality helps us understand statistical learning.
Combining it with the union bound (4.1) yields

P
{

sup
h∈H

R(h) −Rn(h) > t

}
= P

{
sup
h∈H

[Pn(L ◦ h) − P (L ◦ h)] > t

}

≤ |H| max
h∈H

P
{
Pn(L ◦ hi) − P (L ◦ hi) > t

}

≤ |H| exp
(

− nt2

2B2

)
.

Setting the right hand side equal to δ and solving gives t = B
√

2 ln(|H|/δ)/n.
Thus:

26

4. Bounds for finite hypothesis classes

sup
h∈H

|R(h) −Rn(h)| ≤ B

√
2 ln(|H|) + 2 ln(1/δ)

n
w.p. at least 1 − δ.

We have proven Theorem 4.1.1. The tools acquired along the way prepare us for
the next step: infinite classes.

4.3.4. Sub-Gaussian random variables*
The only place where we use boundedness of X in the proof is Hoeffding’s lemma.
Instead, we could directly assume that

E
[
eλ(X−E[X])

]
≤ exp

(
λ2σ2

2

)
. (4.2)

Random variables satisfying this inequality are called Sub-Gaussian with pa-
rameter σ2. For X ∈ N (µ, σ2), (4.2) holds with equality. Other X satisfying
(4.2) then have similar or lighter tails than N (µ, σ2).

Hoeffding’s lemma shows that random variables with |X| ≤ B are Sub-Gaussian
with parameter σ2 = B2. For general Sub-Gaussian variables, Hoeffding’s in-
equality would read

P
(
Xn − E[X] ≥ t

)
≤ exp

(
−nt2

2σ2

)
.

In principle, we could replace almost all our assumptions on boundedness
with Sub-Gaussianity. This still excludes random variables with heavier tails,
though. We’ll maybe discuss how to deal with those a bit later, but continue
with boundedness for simplicity.

27

5. Bounds for infinite hypothesis
classes

The bounds we derived in the previous chapter were educational but unrealistic.
There are hardly any interesting ML algorithms where the hypothesis class
H is finite. We nevertheless learned that concentration of measure enables
generalization and know how to bound deviation probabilities. We’ll also need
this when there are infinitely many hypotheses. Our key issue is that the size |H|
is no longer a sensible measure for H’s capacity.

Key to our treatment of the finite case was the concentration of measure
phenomenon. Hoeffding’s inequality gives a tight bound on the concentration
of the sample average Xn around its expectation E[X]. The concentration of
measure phenomenon is more general, however. In particular, with probability
at least 1 − δ:

sup
h∈H

[
R(h) −Rn(h)

]
≤ E

[
sup
h∈H

[
R(h) −Rn(h)

]]
+B

√
2 ln(1/δ)

n
. (5.1)

The supremum on the left concentrates around its expectation with radius
O(1/

√
n). The expectation is a deterministic quantity. We’ll develop several

meaningful complexity measures C(H) by finding upper bounds to the expectation.
In particular, we’ll show

E

[
sup
h∈H

[
R(h) −Rn(h)

]]
.

C(H)√
n
.

Each measure C(H) provides its own view of the complexity of a function class. In
particular, we’ll develop three complexity measures that give successively cruder
bounds: Rademacher complexity, covering entropy, and VC-dimension.

5.1. McDiarmid’s inequality
To prove (5.1), we need a generalization of Hoeffding’s inequality. Concentration
of measure also appears for other functions g(X1, . . . , Xn) of independent random
variables.

Definition 5.1.1. A function g : Rn → R satisfies the bounded difference
condition on a set S, if for all x1, . . . , xn, x

′
1, . . . , x

′
n ∈ S, there exists a constant

28

5. Bounds for infinite hypothesis classes

M < ∞ such that

|g(x1, . . . , xn) − g(x1, . . . , xi−1, x
′
i, xi+1, . . . , xn)| ≤ M.

The condition only allows functions that aren’t too sensitive to individual inputs.
For example, this excludes functions that explode on S.

The following result shows that g(X1, . . . , Xn) concentrates around its expec-
tation.

Theorem 5.1.2 (McDiarmid’s inequality). Let g : Rn → R be a function
satisfying the bounded difference condition from Definition 5.1.1 with constant
M . For iid random variables X1, . . . , Xn ∈ S and all t > 0, it holds

P
(
E[g(X1, . . . , Xn)] − g(X1, . . . , Xn) ≥ t

)
≤ exp

(
− 2t2
nM2

)
.

Proof sketch, optional. The proof is similar to Hoeffding’s inequality. We start with

P(g(X1, . . . , Xn) − E[g(X1, . . . , Xn)] ≥ t) ≤ e−λtE
[
eλ(g(X1,...,Xn)−E[g(X1,...,Xn)])

]
.

Defining
Vi = E[g(X1, . . . , Xn) | X1, . . . , Xi] − E[g(X1, . . . , Xn) | X1, . . . , Xi−1],

we can write our quantity of interest as a telescoping sum:

g(X1, . . . , Xn) − E[g(X1, . . . , Xn)] =
n∑

i=1

Vi.

Thus,

E
[
eλ(g(X1,...,Xn)−E[g(X1,...,Xn)])

]
= E
[
e

λ
∑

i=1
Vi
]

= E

[
eλVn e

λ
∑n−1

i=1
Vi
]

= E

[
E
[
eλVn | X1, . . . , Xn−1

]
e

λ
∑n−1

i=1
Vi

]
.

The last equality follows from the law of iterated expecations and the fact that Vn−1, . . . , V1 do not depend on
Xn. Note that E[Vi] = 0 and |Vi| ≤ M because g has bounded differences. Hoeffding’s lemma gives

E
[
eλVn | X1, . . . , Xn−1

]
≤ e−λ2M2/8.

Applying the conditioning trick iteratively gives

E
[
e

λ
∑n

i=1
Vi
]

≤ e−λ2M2n/8.

Now proceed as in the proof of Hoeffding’s inequality.

It remains to show that g(Z1, . . . , Zn) = suph∈H |R(h) − Rn(h)| satisfies the
bounded difference property (Definition 5.1.1). This is left as an exercise.

29

5. Bounds for infinite hypothesis classes

Theorem 5.1.3. Define B = supz∈Z,`∈L |`(z)| < ∞. For all δ > 0, it holds
with probability at least 1 − δ,

sup
h∈H

[R(h) −Rn(h)] − E

[
sup
h∈H

[R(h) −Rn(h)]
]

≤ B

√
2 ln(1/δ)

n
.

Theorem 5.1.3 shows that, with high probability,

sup
h∈H

|R(h) −Rn(h)| ≤ E

[
sup
h∈H

[R(h) −Rn(h)]
]

+O(n−1/2).

The expectation on the right is a deterministic quantity, which makes our lives
a bit easier. But it is not a very useful measure for the complexity of H. We
don’t know much about it theoretically and it’s impossible to estimate without
knowing the true probability measure P . In what follows we derive and discuss
complexity measures C(H) that bound this expectation.

5.2. Rademacher complexity
5.2.1. Definition and derivation
The expectation in Theorem 5.1.3 is intimately linked to a quantity called
Rademacher complexity.

Definition 5.2.1. The Rademacher complexity of a function class F is

Rn(F) = E

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]
,

where ε1, . . . , εn are iid Rademacher variables with P(εi = 1) = P(εi = −1) =
1/2 independent of (Zi)n

i=1.

Remark 5.2.2. The Rademacher complexity is sometimes defined with an absolute
value inside the supremum. The two versions are practically equivalent. Indeed,

E

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

≤ E

[
sup
f∈F

∣∣∣∣∣ 1n
n∑

i=1
εif(Zi)

∣∣∣∣∣
]

= E

[
sup

f∈F∪−F

1
n

n∑
i=1

εif(Zi)
]
.

Pretty much all of the following results can be formulated for both versions of the
complexity.

The Rademacher complexity arises from mathematical trickery, called symmetriza-
tion argument. We introduce a hypothetical “ghost sample” D′

n = (Z ′
i)n

i=1. The

30

5. Bounds for infinite hypothesis classes

Z ′
1, . . . , Z

′
n are independent of Z1, . . . , Zn, but have the same distribution. Then

E[f(Z)] = EZ′

[
1
n

n∑
i=1

f(Z ′
i)
]
,

where EZ′ denotes expectation with respect to D′
n only. Now we can write

E[f(Z)] − 1
n

∑
i=1

f(Zi) = EZ′

[
1
n

∑
i=1

(
f(Z ′

i) − f(Zi)
)]
.

Together this gives

E

[
sup
f∈F

E[f(Z)] − 1
n

∑
i=1

f(Zi)
]

= EZ

[
sup
f∈F

EZ′

[
1
n

∑
i=1

(f(Zi) − f(Z ′
i))
]]

≤ EZEZ′

[
sup
f∈F

1
n

∑
i=1

(f(Zi) − f(Z ′
i))
]
,

by Jensen’s inequality. The term
(
f(Z ′

i) − f(Zi)
)
has the same distribution as

εi

(
f(Z ′

i) − f(Zi)
)
, because of independence of Zi and Z ′

i and symmetry. Because
additionally Zi

d= Z ′
i, the double expectation in the last display equals

E

[
sup
f∈F

1
n

∑
i=1

εi(f(Zi) − f(Z ′
i))
]

≤ 2E
[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

= 2Rn(F).

We have shown that twice the Rademacher complexity is an upper bound to
E[supf∈F P (f) − Pn(f)]. In fact, the Rademacher complexity also shows up in a
lower bound.

Theorem 5.2.3. For any function class F with supf∈F ,z∈Z |f(z)| ≤ B,

1
2Rn(F) − B√

n
≤ E

[
sup
f∈F

[P (f) − Pn(f)]
]

≤ 2Rn(F).

Proof (optional). It remains to prove the lower bound. Adding and subtracting E[f(Z)] and the triangle
inequality give

Rn(F) = E

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

= E

[
sup
f∈F

1
n

n∑
i=1

εi

(
f(Zi) − E[f(Z)]

)
+

1
n

n∑
i=1

εiE[f(Z)]
]

≤ E

[
sup
f∈F

1
n

n∑
i=1

εi

(
f(Zi) − E[f(Z)]

)]
+ E

[
sup
f∈F

1
n

n∑
i=1

εiE[f(Z)]
]

.

31

5. Bounds for infinite hypothesis classes

Using the same arguments as in the proof of the upper bound, we can show that

E

[
sup
f∈F

1
n

n∑
i=1

εi

(
f(Zi) − E[f(Z)]

)]
≤ 2E

[
sup
f∈F

1
n

∑
i=1

f(Zi) − E[f(Z)]
]

.

Furthermore,

E

[
sup
f∈F

1
n

n∑
i=1

εiE[f(Z)]
]2

≤ B2E

[∣∣∣ 1
n

n∑
i=1

εi

∣∣∣]2

≤
B2

n2 E

[(n∑
i=1

εi

)2]
(Jensen’s inequality)

=
B2

n2 E

[∑
i=1

ε2
i

]
+

B

n
E

[∑
i6=j

εiεj

]
=

B2

n
,

because E[ε2
i] = 1 and the εi are pairwise independent. Altogether, we have

Rn(F) ≤ 2E
[

sup
f∈F

1
n

∑
i=1

f(Zi) − E[f(Z)]
]

+
B

√
n

.

Rearranging terms proves our claim.

Let’s apply this to the statistical learning context. Recall the definition of the
loss class

L = L ◦ H = {L(·, h(·)) : h ∈ H}

and
sup
h∈H

[R(h) −Rn(h)] = sup
`∈L

[P (`) − Pn(`)].

Theorem 5.2.3 together with Theorem 5.1.3 gives:

With high probability,

1
2Rn(L) −O(n−1/2) ≤ sup

h∈H
[R(h) −Rn(h)] ≤ 2Rn(L) +O(n−1/2).

The upper bounds shows that the Rademacher complexity is indeed a useful
complexity measure for statistical learning. If the complexity is small, also the
generalization gap must be small. The link is even stronger than that: the
generalization gap is also bounded from below by the Rademacher complexity.
As a consequence,

sup
h∈H

[
R(h) −Rn(h)

]
→p 0 ⇔ Rn(L) → 0.

This shows that the Rademacher is a fundamental complexity measure. Let’s
formally state the upper bound for the generalization gap for future reference.

32

5. Bounds for infinite hypothesis classes

Theorem 5.2.4 (Rademacher generalization bound). Define B =
supz∈Z,`∈L |`(z)| < ∞. For all δ > 0, it holds

sup
h∈H

[R(h) −Rn(h)] ≤ 2Rn(L) +B

√
2 ln(1/δ)

n
w.p. at least 1 − δ.

Proof. Follows immediately from Theorem 5.1.3 and Theorem 5.2.3.

5.2.2. Interpretation and properties
The Rademacher complexity is a probabilistic measure of the complexity of
the loss class L = L ◦ H. There is randomness from the unknown measure
P and additional randomness from the Rademacher variables ε1, . . . , εn. It’s a
bit annoying that we’re forced to think about the loss class L instead of the
hypothesis class H however. Let’s change that.

Lemma 5.2.5 (Talagrand’s contraction lemma). For any hypothesis set H
and loss function L with

|L(z, h(z)) − L(z, h′(z))| ≤ c|h(z) − h′(z)| for all h, h′ ∈ H, z ∈ Z, (5.2)

it holds

Rn(L) = Rn(L ◦ H) ≤ cRn(H).

Proof (optional). Fix a sample (z1, . . . , zn) and define the set

A = {a ∈ Rn : ai = h(zi) for some ` ∈ L′}.

It holds

Rn(L) = E

[
sup
h∈H

1
n

n∑
i=1

εiL(zi, h(zi))
]

= E

[
sup
a∈A

1
n

n∑
i=1

εiL(zi, ai)
]

=
1
2
E

[
sup

a,a′∈A

1
n

n∑
i=1

εiL(zi, ai) −
1
n

n∑
i=1

εiL(zi, a′
i)
∣∣∣] (εi

d= −εi)

≤
1
2
E

[
sup

a,a′∈A

|L(zi, a1) − L(zi, a′
1)| +

1
n

n∑
i=2

εi

(
L(zi, ai) − L(zi, a′

i)
)]

≤
1
2
E

[
sup

a,a′∈A

c|a1 − a′
1| +

1
n

n∑
i=2

εi

(
L(zi, a1) − L(zi, a′

1)
)]

(L Lipschitz)

≤
1
2
E

[
sup

a,a′∈A

c(a1 − a′
1) +

1
n

n∑
i=2

εi

(
L(zi, a1) − L(zi, a′

1)
)]

= E

[
c sup

a∈A

ε1a1 +
1
n

n∑
i=2

εiL(zi, ai)
]

.

33

5. Bounds for infinite hypothesis classes

Repeating the argument for i = 2, . . . , n proves the claim.

In most cases, Talagrand’s lemma allows us to replace the loss complexity L
with the hypothesis complexity Rn(H). For example, one can verify that (5.2)
holds with

• c = 1/2 for the 0-1-loss,

• c = 1 for the hinge and logistic loss,

• c = 2
√
B for the square loss,

• c = 1 for the pinball loss,

• c = 1/ infz∈Z,h∈H h(z) for the log-loss.

So let’s focus on the Rademacher complexity of the hypothesis class:

Rn(H) = E

[
sup
h∈H

1
n

n∑
i=1

εih(Zi)
]
.

Intuitively, it measures how well the hypothesis class H can ‘match’ random noise
— or, more pessimistically: how likely we are fooled by random noise. If H is
small, this is very unlikely.

Example 5.2.6 (Single hypothesis). If |H| = 1, we have Rn(H) = 0 (exercise).

E

[
sup
h∈H

1
n

n∑
i=1

εih(Zi)
]

= 0.

E

[
sup
h∈H

1
n

n∑
i=1

εih(Zi)
]

= E

[
1
n

n∑
i=1

εih(Zi)
]

= E[εi]E[h(Zi)] = 0,

using that (εi)n
i=1 is independent from (Zi)n

i=1 and E[εi] = 0.

If H is too large, we can fit almost any pattern and are prone to be fooled by
noise. This interpretation is most obvious for classification.

Example 5.2.7 (Binary classification). For h : Z → {−1, 1}, we have

Rn(H) = E

[
sup
h∈H

1
n

n∑
i=1

εih(Zi)
]

= 1 + E
[
sup
h∈H

1
n

∑
i=1

[εih(Zi) − 1]
]

= 1 + E
[
sup
h∈H

1
n

∑
i=1

−21{εi 6= h(Zi)}
]

= 1 − 2E
[
min
h∈H

Rε
n(h)

]
,

34

5. Bounds for infinite hypothesis classes

where Rε
n is the empirical 0-1-risk on a data set with completely random labels εi.

If H is so large that it can fit any random label pattern, then E[minh∈H R
ε
n(h)] = 0.

Then Rn(H) = 1 and we cannot expect to generalize well. If H is very small,
however, the expected empirical risk minh∈H R

ε
n(h) will be close to 1/2 and

Rn(H) ≈ 0, which gives a tight upper bound to the generalization gap.

The Rademacher complexity does not only depend on the size of H, but also on
the probability measure P . If P is nice, we may afford larger hypothesis classes.

Example 5.2.8. Consider the extreme case, where P is a point mass at z0 ∈ Z,
i.e., P{Z = z0} = 1. It holds

Rn(H) = E

[
sup
h∈H

1
n

n∑
i=1

εih(Zi)
]

= E

[
sup
h∈H

h(z0)
1
n

n∑
i=1

εi

]
≤ sup

h∈H
|h(z0)| × E

[∣∣∣∣∣ 1n
n∑

i=1
εi

∣∣∣∣∣
]
,

and

E

[∣∣∣∣∣ 1n
n∑

i=1
εi

∣∣∣∣∣
]

≤ E

[(
1
n

n∑
i=1

εi

)2]1/2

= 1√
n
,

where we used that εi iid with E[εi] = 0,Var[εi] = 1. As you can see, Rn(H) does
not depend on the number of hypotheses in H at all.

Before we see how to compute the Rademacher complexity for more interesting
examples, let’s mention a few other intuitive properties of Rn that follow directly
from the definition.

Proposition 5.2.9.

1. Rn(F) ≤ Rn(F ′) if F ⊂ F ′.

2. Rn(F + F ′) = Rn(F) + Rn(F ′).

3. Rn(f + cF) = |c|Rn(F) for any c ∈ R and function f .

4. Rn(convF) = Rn(F) with the convex hull of F defined as

convF =
{
f =

∑
k

λkfk : fk ∈ F ,
∑

k

|λk| = 1
}
.

Lastly, we state a lemma for Rademacher complexities of finite sets. It will
prove essential for computing bounds for infinite sets as well.

35

5. Bounds for infinite hypothesis classes

Lemma 5.2.10 (Massart’s lemma). For any A ⊂ Rn with supa∈A ‖a‖2 ≤ r
√
n,

it holds

E

[
max
a∈A

1
n

n∑
i=1

εiai

]
≤ r

√
2 ln(|A|)

n
.

Proof (optional). For any λ > 0, we have

E

[
max
a∈A′

1
n

n∑
i=1

εiai

]
=

1
nλ
E

[
max
a∈A

λ

n∑
i=1

εiai

]
≤

1
nλ

lnE
[

max
a∈A′

e
λ
∑n

i=1
εiai

]
(Jensen)

≤
1

nλ
lnE
[∑

a∈A

e
λ
∑n

i=1
εiai

]
(maxa ≤

∑
a

)

=
1

nλ
lnE
[∑

a∈A

n∏
i=1

eλεiai

]
=

1
nλ

ln
∑
a∈A

n∏
i=1

E

[
eλεiai

]
(εi independent)

=
1

nλ
ln
∑
a∈A

n∏
i=1

eλai + e−λai

2
(P(εi = 1) = P(εi = −1) = 1/2)

≤
1

nλ
ln
∑
a∈A

n∏
i=1

eλ2a2
i /2 (ex + e−x ≤ 2ex2/2)

≤
1

nλ
ln
∑
a∈A

eλ2‖a‖2/2 (‖a‖2 =
∑

i
a2

i)

≤
1

nλ
ln
(

|A| max
a∈A

eλ2‖a‖2/2
)

(
∑

a
≤ |A| maxa)

=
1

nλ

(
ln |A| + max

a∈A
λ2‖a‖2/2

)
=

ln |A|
nλ

+
λr2

2
. (‖a‖ ≤ r

√
n)

This is minimized for λ =
√

2 ln |A|/r2n. Substituting this value in the last display proves our claim.

As a corollary, we get that for finite H,

Rn(H) ≤ sup
h,z

|h(z)|
√

2 ln |H|
n

,

which leads to similar generalization bounds as in Section 4.3.3.

5.2.3. Empirical Rademacher complexity
The Rademacher complexity depends on the distribution P ∼ Z. For a given
choice of P , we can compute the complexity via Monte-Carlo simulation. For
the learning problems we encounter in practice, we don’t know P however. In-
terestingly, we can still estimate the Rademacher complexity from the training
data.

36

5. Bounds for infinite hypothesis classes

Definition 5.2.11. Given a training set Dn = (Zi)n
i=1 empirical

Rademacher complexity of a function class F is

R̂n(F) = Eε

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]
.

The empirical Rademacher complexity takes expectation with respect to ε1, . . . , εn

only. It is still a random variable, because the result depends on Dn. Its
expectation is the usual Rademacher complexity, since

E[R̂n(F)] = EZEε

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

= E

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

= Rn(F).

The empirical complexity concentrates around its expectation. This follows from
a straightforward application of McDiarmid’s inequality.

Theorem 5.2.12. If supz∈Z,f∈F |f(z)| ≤ B, it holds

Rn(F) − R̂n(F) ≤ B

√
2 ln(1/δ)

n
w.p. at least 1 − δ.

We can substitute this into generalization bounds. Aggregating terms and proba-
bilities from Theorem 5.2.4 and Theorem 5.2.12 leads to

sup
h∈H

R(h) −Rn(h) ≤ R̂n(L) + 3B
√

2 ln(1/δ)
n

.

Now the right-hand side does not depend on P and can, in principle, be estimated
from the training data:

Algorithm

1. For k = 1, . . . , K:
(i) simulate Rademacher variables ε1, . . . , εn,
(ii) compute Rk = maxf∈F

1
n

∑n
i=1 εif(Zi),

2. Compute R̂n(F) ≈ K−1∑K
k=1 Rk.

In practice, cross-validation gives much better estimates of the generalization gap
(because it does not involve bounds). The empirical complexity can sometimes
be useful for studying Rademacher complexities itself, however.

37

5. Bounds for infinite hypothesis classes

5.3. Applications
5.3.1. Penalized linear models
To illustrate how the Rademacher complexity helps us understand statistical
learning, we start with a simple model class. Let Z = Rd and consider the class
of norm-constrained linear functions

Hq,M = {z 7→ β>z : ‖β‖q ≤ M}.

Such classes appear natural in penalized regression problems. Using Lagrange
duality, there is λ ≥ 0 such that

β∗ = arg min
‖β‖q≤M

Rn(β) ⇔ β∗ = arg min
β∈Rd

Rn(β) + λ‖β‖q
q.

In particular, for the square-loss and q = 2 this corresponds to ridge regression,
for q = 1 to the lasso. Finding the exact λ that corresponds to a given M is
difficult, but that’s not important qualitatively. As the penalty λ increases, the
bound M decreases and vice versa. We get the following result.

Theorem 5.3.1. It holds

Rn(H1,M1) ≤ M1 sup
z∈Z

‖z‖∞

√
2 ln(2d)

n
and Rn(H2,M2) ≤ M2

√
E[‖Z‖2

2]
n

Proof. We start with a preliminary bound that applies to both q = 1 and q = 2.
Compute

Rn(Hq,M) = E

[
sup

‖β‖q≤M

1
n

n∑
i=1

εiβ
>Zi

]

= 1
n
E

[
sup

‖β‖q≤M

β>
n∑

i=1
εiZi

]

≤ 1
n
E

[
sup

‖β‖q≤M
‖β>‖q

∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
q/(q−1)

]
(Hölder’s inequality)

≤ M

n
E

[∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
q/(q−1)

]
,

where ‖x‖∞ = max1≤j≤d |x(j)|. The expectation on the right does not depend on
Hq,M , only on q and the distribution of Zi. For q = 2, we have q/(q − 1) = 2,
and a computation similar to Example 5.2.8 gives

E

[∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
2

]2

≤ E

[∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
2

2

]
=

d∑
j=1
E

[∣∣∣∣∣
n∑

i=1
εiZ

(j)
i

∣∣∣∣∣
2]

≤ n
d∑

j=1
E[|Z(j)

i |2] = nE[‖Zi‖2
2].

38

5. Bounds for infinite hypothesis classes

This proves the second inequality. For q = 1 see the exercises. For q = 1, we
have q/(q − 1) = ∞ and write

E

[∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
∞

]
= E

[
max
1≤j≤d

∣∣∣∣∣
n∑

i=1
εiZ

(j)
i

∣∣∣∣∣
]
.

Condition on Dn = (Zi)n
i=1, define A = ⋃d

j=1{(Z(j)
i)n

i=1} and note that |A| = d
and maxa∈A ‖a‖2 ≤

√
nmaxa∈A ‖a‖∞. Apply Massart’s lemma (Lemma 5.2.10)

to get

Eε

[
max
1≤j≤d

∣∣∣∣∣ 1n
n∑

i=1
εiZ

(j)
i

∣∣∣∣∣
]

= Eε

[
max
a∈A

∣∣∣∣∣ 1n
n∑

i=1
εiai

∣∣∣∣∣
]

= Eε

[
max

a∈A∪−A

1
n

n∑
i=1

εiai

]

≤ max
a∈A

‖a‖∞

√
2 ln |2d|

n
.

Now the first claim follows from

max
a∈A

‖a‖∞ = max
1≤j≤d

max
1≤i≤n

|Z(j)
i | ≤ sup

z∈Z
‖z‖∞.

With everything else fixed, both bounds decrease as O(1/
√
n) and increase

linearly in Mq. Their main difference is the norms of β and Z — in particular,
how they scale with the dimension d. The term B = supz∈Z ‖z‖∞ does not
depend on the dimension at all, but M1,M2, and E[‖Z‖2

2] do.

A case for ridge regression

Assuming that all entries of a vector x ∈ Rd have a similar scale, we have
‖x‖q = O(d1/q). In particular, we should expect M1 = O(d),M2 = O(

√
d), and√

E[‖Z‖2
2] = O(

√
d). Plugging this into the bounds above gives

Rn(H1,M1) = O

(
d

√
log(2d)
n

)
and Rn(H2,M2) = O

(
d

√
1
n

)
.

The lasso complexity Rn(H1,M1) scales slightly worse then the ridge complexity
Rn(H2,M2). If d is large compared to n, lasso may generalize slightly worse.

A case for the lasso

The situation changes if we assume β to be s-sparse (only having s nonzero
entries). Define1

Hq,M,s = {z 7→ β>z : ‖β‖q ≤ M, ‖β‖0 ≤ s}.

1The ‘0-norm’ ‖x‖0 is simply counting the non-zero elements of x.

39

5. Bounds for infinite hypothesis classes

Now ‖β‖q = O(s1/q), and substituting gives M1 = O(s),M2 = O(
√
s), and

Rn(H1,M1,s) = O

(
s

√
log(2d)
n

)
and Rn(H2,M2,s) = O

(√
sd

n

)
.

If the sparsity is s is small compared to d, the lasso-complexity scales much better.
So if we believe to find sparse patterns, we should prefer the lasso over ridge
penalty.

The approximation-generalization trade-off

The Rademacher complexity bounds the statistical part of the risk, the estimation
error. For the overall error, we also have to account for approximation error.
Theorem 5.2.4 and Eq. (3.1) give

R(ĥ) ≤ inf
h∈H

R(h) + 2Rn(L) +B

√
2 ln(1/δ)

n
. (5.3)

The first term on the right is the best possible risk attainable by H. It generally
decreases with the capacity of H. For example, suppose L is the square loss and
β̂ = arg minβ∈H2,M2

Rn(β) the ridge-regression solution.

Proposition 5.3.2. Let β0 = arg minβ∈Rn R(β) be the optimal solution and
C2 = E[‖Z‖2

2]. Then with probability at least 1 − δ,

R(β̂) ≤ R(β0)︸ ︷︷ ︸
optimal risk

+C2(‖β0‖2 −M2)2
+︸ ︷︷ ︸

approximation error

+
4
√
BM2C +B

√
2 ln(1/δ)

√
n︸ ︷︷ ︸

generalization error

,

where A+ = max(A, 0) denotes the positive part.

The optimal risk is out of our control. As long as M2 < ‖β0‖, the class H2,M2

does not include the optimal solution. In that case, the is approximation error is
nonzero. To make it small, we want to make M2 large. But this might hurt us in
terms of the generalization error, which is of order O(M2/

√
n).

Proof. By the contraction lemma (Lemma 5.2.5) and Theorem 5.3.1,

Rn(L) = Rn(L ◦ H2,M2) ≤ 2
√
BRn(H2,M2) ≤ 2

√
BM2C√
n

.

Then

R(β̂) ≤ inf
‖β‖≤Mq

R(β) + 4
√
BM2C√
n

+B

√
2 ln(1/δ)

n
.

40

5. Bounds for infinite hypothesis classes

Furthermore,

inf
‖β‖≤Mq

R(β) −R(β0)

= inf
‖β‖≤Mq

E[(Y − β>Z)2 − (Y − β>
0 Z)2]

= inf
‖β‖≤Mq

E[−2Y (β>Z − β>
0 Z) + (β>Z)2 − (β>

0 Z)2]

= inf
‖β‖≤Mq

E[−2(β>
0 Z + ε)(β>Z − β>

0 Z) + (β>Z)2 − (β>
0 Z)2]

= inf
‖β‖≤Mq

E[−2(β>
0 Z)(β>Z − β>

0 Z) + (β>Z)2 − (β>
0 Z)2] (E[ε | Z] = 0)

= inf
‖β‖≤Mq

E[(β>Z − β>
0 Z)2]

≤ C2 inf
‖β‖≤Mq

‖β − β0‖2
2, (Cauchy-Schwarz)

= C2(‖β0‖2 −M2)2
+.

5.3.2. Interpreting bounds and learning from proofs
Now is a good time to emphasize that we are dealing with bounds, not equalities.
Bounds can be loose and one more than another. A comparison of two bounds
can lead to wrong conclusions. To make a stupid example, the following version
of the first inequality of Theorem 5.3.1 is also true:

Rn(H1,M1) ≤ M1 sup
z∈Z

‖z‖∞d
100.

Proof:
√

log(2d) ≤ d100 and 1/n ≤ 1. Now the bound scales terribly with d and
does not decrease in n at all.

So how can we gain confidence in our bounds? The gold standard is to prove
matching lower bounds, at least up to constants. In the learning context, this
is typically much harder than proving upper bounds. There are some amazing
results along that line and will probably touch on that topic a bit later.

A more manageable alternative is to check the steps of our proof. Proves of
upper bounds consist of a chain of arguments, successively bounding terms in
little steps. In each of the steps, we can check: how loose is this bound? How
likely are edge cases where equality is attained? How much smaller is the term
under likely/normal conditions?

In Theorem 5.3.1, we used quite similar arguments for the two bounds. The
inequalities we used (Jensen, Hölder, norm bounds, Massart’s lemma) are known
to be sharp — at least there are edge cases that attain them. That should give us
some confidence that the two bounds are comparable, at least in how they scale
with d and n. That’s why understanding mathematical proofs is so valuable. We
learn about the forces that act and in which situations they are good or bad. It
can also give us ideas on how to improve methods or invent new ones. In fact,
most methods you know and use have arisen from a mathematical understanding

41

5. Bounds for infinite hypothesis classes

of the problem and forces that act.
There’s no need to ponder hours about all the proofs in these notes and look

for lower bounds at every step. Essentially all bounds can be improved for special
cases or under additional assumptions. Statistical learning theory is not about
finding the sharpest of all bounds, but about understanding the fundamentals of
the problem.

5.3.3. Ensembles
The Rademacher complexity also gives interesting insights into ensemble methods.
Let W be a simple hypothesis class. An ensemble algorithm learns composite
hypotheses

HK,W =
{
h =

K∑
k=1

λkhk : h1, . . . , hk ∈ W ,
K∑

k=1
|λk| = 1

}
.

Example 5.3.3 (Random forest). A random forest uses decision trees as base
class,

W =
{
h : X → R : x 7→

J∑
j=1

βj1(x ∈ Xk), β ∈ B ⊂ RJ ,X =
J⋃

j=1
Xj

}
,

where the Xj are axis-aligned rectangles. The ensemble members ĥk ∈ W are
trained independently on random subsets of the samples and features. The
algorithm then outputs the final hypothesis

ĥ = 1
K

K∑
k=1

ĥk ∈ HK,W .

Example 5.3.4 (Boosting). Decision trees are often used in boosting methods,
where W is called the class of weak learners. Now the weak learners ĥk are
constructed in sequence, such that ĥk corrects errors made by ĥ1, . . . , ĥk−1 and
λ̂k are data-driven weights. After K iterations, the algorithm outputs the final
hypothesis

ĥ =
K∑

k=1
λ̂kĥk ∈ rHK,W ,

where r = ∑K
k=1 |λ̂k|.

By definition, HK,W lies in the convex hull of W . Proposition 5.2.9 then implies

Rn(HK,W) = Rn(W).

No matter how many hypotheses we average, our generalization error bound

42

5. Bounds for infinite hypothesis classes

does not change. For boosting, the weights |λ̂k| don’t usually sum to one. Often
the sum grows only very slowly in K however. When that’s the case, running
a boosting algorithm for many rounds bears little statistical cost. (There is
computational cost of course). This is in line with empirical findings. At least for
boosting methods, running additional rounds decreases the approximation error

inf
h∈HK,W

[R(h) −R(h0)]

to some degree. For most popular choices of W, one can often find simple and
interpretable bounds on the Rademacher complexity Rn(W). This is the subject
of the next sections.

5.3.4. Algorithms using basis approximation
Our analysis of linear models is easy to extend to a much more general setting.
Suppose

Yi = f(Xi) + εi, with E[εi | Xi] = 0,Var[εi] = σ2.

Let φ = (φ1, . . . , φK) be a vector of basis functions φk : Z → R. To approximate
the function f , we use

hβ(x) =
K∑

k=1
βjφk(x) = β>φ(x),

which is essentially a linear model. This formulation has many important special
cases, including splines, wavelets, and SVMs. Often, one constructs n or more
basis functions and relies on penalties/norm constraints for generalization.

To measure the risk of the algorithm, we switch the loss function. The scaling
of the square loss generally makes the preceding bounds suboptimal. With
refined arguments, one can typically achieve a generalization error scaling as
O(1/n) instead of O(1/

√
n). We’ll get back to that later. The absolute error

L(y, h(x)) = |−h0(x)| has the right scaling. Define the constrained least absolute
deviation solution

β̂ = arg min
‖β‖2≤M2

1
n

n∑
i=1

|Y − hβ(Xi)|,

which corresponds to median regression. Following similar arguments, we get:

Proposition 5.3.5. Let C2 = E[‖φ(X)‖2
2]. Then with high probability,

R(h
β̂
) ≤ σ + inf

‖β‖2≤M2
EX [|β>φ(X) − f(X)|] +O

(
M2C√
n

)
.

43

5. Bounds for infinite hypothesis classes

m = 5 m = 10

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

0.00

0.25

0.50

0.75

1.00

x

ψ
k(x

)

Figure 5.1.: Cubic spline bases with m basis functions.

Proof idea. Start again with (5.3).

R(ĥ) ≤ inf
h∈H

R(h) + 2Rn(L) +B

√
2 ln(1/δ)

n
.

Using similar computations as in Theorem 5.3.1, we can show that the last two
terms are of order O(CM2/

√
n). For the first term,

inf
h∈H

R(h) = R(f) + inf
h∈H

[R(h) −R(f)].

It holds

R(f) = E[|Y − f(X)|] ≤
√
E[|Y − f(X)|2] =

√
E[ε2] = σ

and

|R(hβ) −R(f)| ≤ E[|hβ(X) − f(X)|] = E[|β>φ(X) − f(X)|].

The risk is bounded by three terms. The first is the unavoidable noise variance.
The second is the approximation error. It depends on both the expressivity of
the basis φ and the norm constraint M2. The third is the generalization error.
It decreases with n, and increases in M2 and C. The term C2 = ∑K

k=1E[φk(Z)2]
measures the probablisitic size of the K-dimensional vector of basis functions
φ(Z). How this term scales with K, depends on the basis system. For splines,
the component norms E[φk(Z)2] decrease with their number K. For wavelet and
Fourier bases, E[φk(Z)2] typically decreases with its index k.

Tensor product splines

Let’s make this concrete for cubic product splines with m basis functions for each
dimension. We start with a univariate B-spline basis ψ1, . . . , ψm. Such bases
are illustrated in Fig. 5.1 for m = 5, 10. To approximate a univariate function

44

5. Bounds for infinite hypothesis classes

mopt

0

3

6

9

12

10 20 30 40 50
m

va
lu

e
type

approximation error

estimation error

risk

Figure 5.2.: The bias-variance tradeoff for tensor product splines with d = 3.

f : R → R, we compute a weighted sum of the basis functions:

f(x) ≈
m∑

k=1
βkψk(x).

The exact formula for the basis functions ψk isn’t too important, some visual
intuition is enough. Each basis function concentrates on a subset of [0, 1] of
length at most 5/m. The more basis functions we have, the more the individual
functions concentrate. As m grows, this gives us increasingly fine local control of
the approximation. One can show that as m → ∞, we can approximate any four
times continuously differentiable function g to arbitrary accuracy. More precisely,

inf
β

sup
x∈X

|β>ψ(x) − f(x)| = O(m−4).

We’ll see later where this comes from.
To approximate multivariate functions f : Rd → R, we can combine univariate

bases:

f(x) ≈
m∑

k1=1
· · ·

m∑
kd=1

βk1,...,kd
φk1(x1) · · ·φkd

(xd).

This construction is called a tensor product spline. We can rewrite this as a linear
model β>φ(x) by collecting all coefficients βk1,...,kd

in a long vector β ∈ Rmd and
defining

φ(x) =

ψ1(x1) · · ·ψ1(xd)

ψ2(x1)ψ1(x2) · · ·ψ1(xd)
...

ψm(x1) · · ·ψm(xd).

If M2 is large enough and f four times continuously differentiable, one can

45

5. Bounds for infinite hypothesis classes

0.00

0.05

0.10

0 1000 2000 3000 4000 5000
n

ris
k

d

1

5

10

50

Figure 5.3.: The optimal convergence rate for different dimensions. Convergence
is much slower when the dimension is large.

show

inf
‖β‖2≤M2

sup
x∈X

|β>φ(x) − f(x)| = O(m−4),

M2 = O(md/2),

C2 =
K∑

k=1
O(m−d) = O(1).

Together this gives

R(h
β̂
) ≤ σ +O(m−4) +O(md/2n−1/2).

The approximation error O(m−4) decreases with m, the generalization error
O(md/2n−1/2) increases with m. The optimal choice of m balances the two terms.
This is illustrated in Fig. 5.2 for d = 3. The approximation error decreases as
m−4, the estimation error increases as m3/2, and the risk is the sum of the two
terms plus σ. The perfect balance is attained at mopt = 20 in this case.

More generally, optimizing the risk O(m−4 + md/2n−1/2) for m gives mopt ∝
n1/(8+d), and

R(h
β̂
) ≤ σ +O(n−4/(8+d)).

We determined the optimal value of m only up to unknown constants. This is
sensible since constants appearing in bounds are rarely optimal. The analysis
still has practical consequences. Since we know m scales as An1/(8+d), we can
tune the hyperparameter A with a small subset of the training data, and then
scale m up to the actual training set size.

46

5. Bounds for infinite hypothesis classes

The curse of dimensionality

The best possible convergence rate is another insight of our analysis. The con-
vergence rate O(n−4/(8+d)) is known to be optimal for estimating four times
differentiable functions. No algorithm ĥ can achieve a faster rate on all of them.
The convergence rate scales pretty badly with d. No matter the value of d, the
rate is slower than O(n−1/2). This is typical in nonparametric problems, where
an infinite-dimensional object (the function f) is learned. While for d = 1 the
rate O(n−4/9) is pretty close to O(n−1/2), already for d = 10 we get O(n−2/9)
which is much slower. In practice, that means we need waaaay more training
data to learn the function f to a given accuracy. This phenomenon is known as
curse of dimensionality. Fig. 5.3 illustrates the different convergence rates. While
convergence is relatively fast for d = 1, there is hardly any convergence when
d = 50. To put this into perspective: to achieve the same accuracy as for d = 1
and n = 103, we need around n ≈ 106 when d = 10, and n ≈ 109 when d = 50.

The curse can only be mitigated by imposing additional assumptions. For
example, assuming a higher degree of smoothness and using higher-order splines
improves the convergence rates, but not their scaling with d. To improve this
scaling, one needs structural assumptions that constrain the effective dimension
of the function f .

Additive splines

A common structural assumption to avoid the curse of dimensionality is additivity:
We assume that f can be decomposed into a sum of d univariate functions,

f(x) =
J∑

j=1
fj(xj),

and approximate it with a basis vector φ : R → Rm and

hβ(x) =
d∑

j=1
β>

j φ(xj), β = (β1, . . . , βJ) ∈ Rm×d.

Now there are only md (instead of md) basis coefficients to train. Now we have

inf
‖β‖2≤M2

sup
x∈X

|β>φ(x) − f(x)| = O(dm−4),

M2 = O(
√
dm),

C2 =
dm∑
k=1

O(m−1) = O(d),

which gives

R(h
β̂
) ≤ σ +O(m−4) +O(d3/2m1/2n−1/2).

47

5. Bounds for infinite hypothesis classes

Figure 5.4.: A covering of the function class F with balls of size ε. The minimal
number of balls required is the covering number.

The optimal choice is mopt ∝ d−1/3n−1/9, yielding

R(h
β̂
) ≤ σ +O(d4/3n−4/9).

Now the error scales much better with d. The dimension only shows up poly-
nomially but does not affect how the error scales with n. For any finite d, the
convergence rate is O(n−4/9) equivalent to a one-dimensional problem.

5.4. Covering numbers and entropy
The Rademacher complexity measures the capacity of the hypothesis class and
allows to bound the generalization error. In general, it depends on both H and
the unknown measure P . There are other capacity measures that upper bound
the Rademacher complexity and do not depend on P . This has two advantages.
The generalization bounds become not only simpler but also stronger: they are
valid uniformly over all possible P . If P is irrelevant, such complexity measures
focus purely on the geometry of the hypothesis class H. Covering numbers give
a geometric measure for capacity through discretization.

5.4.1. Definition
A collection of balls B(fk, ε) = {f ∈ F : ‖f − fk‖ ≤ ε} is called a cover of F if
F ⊂ ⋃N

k=1 B(fk, ε). An ε-cover is illustrated in Fig. 5.4. The minimal number
of balls required to cover F is the covering number. The following definition is
equivalent.

48

5. Bounds for infinite hypothesis classes

Figure 5.5.: Coverings of [0, 1] (left) and [0, 1]2 (right) in the `∞ norm.

Definition 5.4.1. For any (semi)-norm ‖ · ‖ on F and ε > 0, the covering
number N = N(ε,F , ‖ · ‖) is the minimal number of elements f1, . . . , fN

required such that for all f ∈ F ,

min
1≤k≤N

‖f − fk‖ ≤ ε.

The covering entropy is its logarithm, lnN(ε,F , ‖ · ‖).

The covering number quantifies how easy it is to discretize F to a given accuracy,
in a given norm ‖ · ‖. Instead of all functions in F , we only consider a finite
number of the centers f1, . . . , fN of an ε-covering. Then for any function f ∈ F ,
we can find a center fk with distance at most ε. The larger the covering number
N is for a given ε, the more capacity F has at that scale.

To build intuition, it helps to think of covering numbers of Euclidean sets
F ⊂ Rd. As the simplest example, take F = [0, A] and ‖ · ‖ = | · |. We want to
pick numbers x1, . . . , xN such that for any x, there is k with |x− xk| ≤ ε. This is
easily achieved by x1 = ε, x2 = 2ε, . . . , xN = 1, see Fig. 5.5. In this construction,
we need N ≤ 1/ε numbers, so N(ε, [0, A], | · |) ≤ dA/εe. The larger the interval
is, the more points we need in the cover for any given ε.

We can extend this argument to [0, A]2 ⊂ R2 by adding a sequence yk = kε and
taking all combinations (xk, yj), k, j = 1 . . . , dA/εe. This gives us N ≤ dA/εe2 =
O(1/ε2) and for any (x, y) ∈ [0, A]2, there is (k, j) such that

‖(x, y) − (xk, yj)‖∞ = max{|x− xk|, |y − yk|} ≤ ε.

The choice of norm makes a difference. For example,

‖(x, y) − (xk, yj)‖1 = |x− xk| + |y − yk| ≥ ‖(x, y) − (xk, yj)‖∞.

So we need more balls to cover [0, A]2 in the 1-norm. For Euclidean sets, this
difference is negligible, however. In general, we have the following result.

49

5. Bounds for infinite hypothesis classes

Lemma 5.4.2. Let ‖ · ‖ be a norm on Rd and S = {x ∈ Rd : ‖x‖ ≤ r}. Then
(
r

ε

)d

≤ N
(
ε, S, ‖ · ‖

)
≤
(

3r
ε

)d

.

The covering number scales polynomially in 1/ε. How fast it grows is determined
by the intrinsic dimension d of the space.

We conclude that the covering number of a class depends on the norm, the
diameter of a set in this norm, and its inherent dimension.

5.4.2. Covering bound on the Rademacher complexity
The Rademacher complexity involves a supremum over infinitely many f ∈ F .
If we are satisfied with an error of ε, we can replace the infinite supremum with
a maximum over finitely many f1, . . . , fN . Together with Massart’s lemma, this
gives an easy bound on the Rademacher complexity.

Remark 5.4.3. In the following, we assume for simplicity that all f ∈ F
are uniformly bounded by 1, i.e., supf∈F ,z∈Z |f(z)| ≤ 1. If f was uniformly
bounded by B instead, we could appeal to Proposition 5.2.9 (c) which shows

Rn(F) = BRn(F/B).

Any f ∈ F/B is now uniformly bounded by 1.

Proposition 5.4.4. Suppose supf∈F ,z∈Z |f(z)| ≤ 1. For all ε > 0,

Rn(F) ≤ ε+

√√√√2 supQ lnN
(
ε,F , L2(Q)

)
n

,

where the supremum is taken over all probability measures.

Proof. Let’s fix the data Z1, . . . , Zn for the moment. Define the L2(Pn) norm
with respect to the empirical measure Pn by

‖f‖L2(Pn) =
√∫

f(z)2dPn(z) =
√√√√ 1
n

n∑
i=1

f(zi)2.

Let f1, . . . , fN denote the centers of an ε-covering in this norm. Then

Eε

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

≤ Eε

[
sup
f∈F

1
n

n∑
i=1

εi[f(Zi) − fk(Zi)] + 1
n

n∑
i=1

εifk(Zi)
]

(take fk closest to f)

50

5. Bounds for infinite hypothesis classes

≤ sup
f∈F

1
n

n∑
i=1

|f(Zi) − fk(Zi)| + E
[

max
1≤k≤N

1
n

n∑
i=1

εifk(Zi)
]
. (triangle inequality)

For any f ∈ F , Jensen’s inequality gives

1
n

n∑
i=1

|f(Zi) − fk(Zi)| ≤

√√√√ 1
n

n∑
i=1

|f(Zi) − fk(Zi)|2 = ‖f − fk‖L2(Pn) ≤ ε,

where we used that f1, . . . , fN are centers of an ε-covering. Further, Massart’s
lemma (Lemma 5.2.10) yields

Eε

[
max

1≤k≤N

1
n

n∑
i=1

εifk(Zi)
]

≤

√√√√2 lnN
(
ε,F , L2(Pn)

)
n

≤

√√√√2 supQ lnN
(
ε,F , L2(Q)

)
n

.

The claim follows from combining the last three displays.

Let’s discuss the bound.

• Its first term increases with the discretization error ε.

• Its second decreases with the training set size n as O(1/
√
n), just as in the

examples discussed in the previous section.

• It increases with the uniform covering entropy supQ lnN
(
ε,F , ‖·‖L2(Q)

)
.

Clearly, N(ε,F , ‖ · ‖) is a decreasing function of ε: the smaller the discretization
error ε, the more balls we need to cover F . This creates tension between the
two terms in Proposition 5.4.4. Since ε is arbitrary, we can choose the one that
minimizes the bound.

5.4.3. Euclidean function classes
Proposition 5.4.4 is most useful for Euclidean classes.

Definition 5.4.5 (Euclidean class). A uniformly bounded function class F is
called Euclidean if there are constants A, V such that for all ε ∈ (0, 1],

sup
Q
N
(
ε,F , ‖ · ‖L2(Q)

)
≤ Aε−2V .

The scaling of the covering number in ε is similar to the one of norm balls in
Rd (Lemma 5.4.2), hence the name. Now, the number V plays the role of the
intrinsic dimension of the space. The larger it is, the more complex is the class.

For ε → 0, the uniform covering entropy of a Euclidean class is

sup
Q

lnN
(
ε,F , ‖ · ‖L2(Q)

)
≈ V ln(1/ε). (5.4)

51

5. Bounds for infinite hypothesis classes

This term grows very slowly as ε → 0. For example, taking ε = 1/n2 in Proposi-
tion 5.4.4 gives

Rn(F) . 1
n2 +

√
V lnn
n

.

The first term is negligible compared to the second, which decays as O(
√

lnn/n)
— only slightly slower than O(1/

√
n). The lnn factor can be removed with a

finer bound developed later.
Euclidean classes are essentially finite dimensional. We can learn them as

well as Euclidean parameters θ ∈ Rp. Unsurprisingly, important examples of
Euclidean function classes are those that are parametrized by a Euclidean vector.

Example 5.4.6. Suppose F is contained in a bounded subset of p-dimensional
vector space of functions. That is, there is M < ∞ such that we can write f ∈ F
as f(z) = ∑p

j=1 θjφj(z) for some basis functions φ1, . . . , φp and coefficient
θ ∈ Rp with ‖θ‖ ≤ M . Then F is Euclidean with dimension V = p+ 1.

Example 5.4.7. Let Θ be a bounded subset of Rp. Define F = {fθ : θ ∈ Θ}
as a collection of functions that are Lipschitz in θ, i.e.,

|fθ(z) − fθ′(z)| ≤ Φ(z)‖θ − θ′‖,

with ‖Φ‖L2(P) < ∞. Then F is Euclidean with dimension V = p.

Example 5.4.8. Let ψ : R → R be any function of bounded variation. Then

{ψ(‖Az − b‖) : A ∈ Rm×k, b ∈ Rm}

is Euclidean with V = m(k + 1) and

{ψ(β>z + a) : β ∈ Rp, a ∈ R}

is Euclidean with V = p+ 1.

Remark 5.4.9. We didn’t address the constant A from Definition 5.4.5. Its
magnitude is often an artifact of the proof and nobody really cares to make them
small. We’re already far down a chain of several bounds. Their purpose is not
numerical accuracy, but to help us understand which forces act on generalization.

The linear models

H2,M = {z 7→ β>z : β ∈ Rd, ‖β‖2 ≤ M}

52

5. Bounds for infinite hypothesis classes

Figure 5.6.: A chain of successively finer coverings.

are a special case of all examples above with envelope F (z) = M‖z‖2. Letting B =
supz∈Z,f∈F |f(z)| and supz∈Z ‖z‖2 ≤ 1, we have B ≤ M . Recalling Remark 5.4.3,
we get the Rademacher bound

Rn(H2,M) .M

√
d lnn
n

.

This is much worse than our direct bound from Theorem 5.3.1:

Rn(H2,M) .M

√
1
n
.

The extra
√
d factor is clearly unnecessary, so the covering bounds are rather

crude. A similar factor for the number of basis coefficients would also appear for
the basis expansions in Section 5.3.4, which is a special case of Example 5.4.6.
This highlights once again that it’s important to be careful when interpreting
bounds. Depending on the focus of our analysis, we may or may not get away
with cruder bounds.

Neural networks are also a special case of Example 5.4.7. The corresponding
Rademacher bound is R(H) .

√
p/n, where p is the number of parameters of

the network. Since in modern applications, p � n, such simple bounds cannot
explain generalization in the overparametrized regime. We’ll need more attention
to detail.

5.4.4. Chaining and the entropy integral
The Rademacher bound in Proposition 5.4.4 is far from optimal. It is sufficient
for Euclidean classes, but useless for more complex classes. Classes of general
smooth functions are an example.

53

5. Bounds for infinite hypothesis classes

Example 5.4.10. Let Ck
M be the set of all k-times continuously differentiable

functions Z → R with all derivatives bounded uniformly by M and K =
supz∈Z ‖z‖∞. Then

sup
Q

lnN(ε, Ck
M , L2(Q)) .MK

(
1
ε

)d/k

.

This is a bound on the covering entropy, not the covering number. Compared to
the bound for Euclidean classes, we have a logarithm on the left-hand side. The
covering number bound would scale as O(eε−d/k), which is exponentially worse
than for Euclidean classes.

Even for such large classes, we can derive a meaningful Rademacher bound. It
arises from a clever technique called chaining. The idea is to construct a sequence
of coverings at successively finer scales. Then follow the path from f (the finest
scale with ε = 0) to an approximation on coarse scale. This is illustrated in
Fig. 5.6. In each step along this chain, we can bound the complexity separately,
and aggregate the results.

Theorem 5.4.11 (Dudley’s Theorem). Suppose supf∈F ,z∈Z |f(z)| ≤ 1. It
holds:

Rn(F) ≤ 12√
n

sup
Q

∫ 1

0

√
lnN

(
ε,F , L2(Q)

)
dε.

More precisely: for any α ≥ 0,

Rn(F) ≤ 4α + 12√
n

sup
Q

∫ 1

α

√
lnN

(
ε,F , L2(Q)

)
dε.

Proof. Let δj = (1/2)j and F (j) = {f (j)
1 , . . . , f

(j)
Nj

} be the centers of δj-coverings
in the L2(Pn)-norm. Note that because supf∈F ,z∈Z |f(z)| ≤ 1, F is contained in
a single L2(Pn)-ball of size δ0 = 1. Denote the center closest to f by f (j) ∈ F (j).
By adding and subtracting term, expand

f = f − f (J) + f (J) − f (J−1) + f (J−1) + · · · − f (0) + f (0).

Taking J → ∞, we have f − f (J) → 0 and thus

f = f (0) +
∞∑

j=1
(f (j) − f (j−1)).

Substitute this expression in the empirical Rademacher complexity:

Eε

[
sup
f∈F

1
n

n∑
i=1

εif(Zi)
]

54

5. Bounds for infinite hypothesis classes

= Eε

[
sup
f∈F

1
n

n∑
i=1

εif
(0) +

∞∑
j=1

1
n

n∑
i=1

εi(f (j)(Zi) − f (j−1)(Zi))
]

≤ Eε

[
sup
f∈F

1
n

n∑
i=1

εif
(0)(Zi)

]
+

∞∑
j=1
Eε

[
sup
f∈F

1
n

n∑
i=1

εi(f (j)(Zi) − f (j−1)(Zi))
]
.

[The term in the third line is larger, because there we can take a worst-case f
for every j, while in the second we have to settle on one f for all j.] Because
F (0) = {f (0)} consists of a single function, we have

Eε

[
sup
f∈F

1
n

n∑
i=1

εif
(0)(Zi)

]
= Eε

[
1
n

n∑
i=1

εif
(0)(Zi)

]
= 0.

To bound the other terms, we want to apply Massart’s lemma. We first find a
bound on the radius. By the triangle inequality,

‖f (j) − f (j−1)‖L2(Pn) ≤ ‖f (j) − f‖ + ‖f − f (j−1)‖L2(Pn) ≤ δj + δj−1 = 3δj.

Furthermore, there are at most NjNj−1 functions in the set

F (j) − F (j−1) =
{
f (j) − f (j−1) : f (j) ∈ F (j), f (j−1) ∈ F (j−1)

}
.

Denote for simplicity N(δ) = N
(
δ,F , ‖ · ‖L2(Pn)

)
. Now,

∞∑
j=1
Eε

[
sup
f∈F

1
n

n∑
i=1

εi(f (j) − f (j−1))
]

≤ 3
∞∑

j=1
δj

√
2 ln[N(δj)N(δj−1)]

n
(Massart’s lemma)

≤ 6√
n

∞∑
j=1

δj

√
lnN(δj) (N(δj) ≥ N(δj−1))

= 12√
n

∞∑
j=1

(δj − δj+1)
√

lnN(δj) (δj = 2(δj − δj+1))

≤ 12√
n

∫ δ0

0

√
lnN(δ)dδ. (Riemann series)

The last inequality holds because
√

lnN(δ) is a decreasing function in δ, so
N(δj) ≤ N(δ) for all δ ∈ [δj+1, δj]. The term (δj − δj+1)

√
lnN(δj) is then

the area of a box underneath the graph of
√
N(δ). Now take supremum over

probability measures. The second bound involving α can be derived by stopping
the chain early.

55

5. Bounds for infinite hypothesis classes

5.4.5. Applications
Dudley’s theorem allows us to get rid of the unnecessary lnn factor in general-
ization bounds for Euclidean classes (5.4).

Example 5.4.12 (Euclidean classes). If F is Euclidean, so N(ε) . ε−2V , we
have

sup
Q

∫ 1

0

√
lnN(ε,F , L2(Q))dε .

√
2V

∫ 1

0

√
log(1/ε)dε .

√
V .

Dudley’s theorem implies

Rn(F) .
√
V

n
,

The unnecessary parameter dimension in the generalization bounds for linear
models or neural networks does not immediately disappear, however. The theo-
rem’s real power lies elsewhere. Dudley’s theorem let’s us treat classes F whose
covering number scales much worse than ε−V .

For classes with lnN(ε) ≤ A/ε2 (notice the log!),a

Rn(F) .
√
A lnn
n

.

aApply Theorem 5.4.11 with α = n−2.

Compare this to the bound implied by Proposition 5.4.4:

Rn(F) . ε+
√
A/ε2

n
.

The optimal choice is ε ∝ n−1/4, for which Rn(F) . A1/4n−1/4 which vanishes
much slower. So especially for large function classes, Dudley’s theorem gives us
much sharper control over the generalization gap.

Example 5.4.13 (Smooth functions). The class of k-smooth functions from
satisfies lnN(ε) ≤ A/ε2 if k ≥ d/2 and, thus,

Rn(F) .
√
A lnn
n

.

Warning: In the following, we hide logarithmic factors in the .-sign and
O-symbol.

56

5. Bounds for infinite hypothesis classes

If k < d/2, we need more care to find the best α and will get rates slower
than O(1/

√
n). This is left as an exercise. The set of all k-smooth functions is

incredibly rich. It’s a truly nonparametric, infinite-dimensional class of functions.
This also provides a new viewpoint on parametric classes.

Theorem 5.4.14. Let q ≥ 1, supx∈X ‖x‖(q−1)/q ≤ B, and

Fq,M = {x 7→ β>x : β ∈ Rd, ‖β‖q ≤ M}.

Then
R(Fq,M) . M(B + 1)√

n
.

Proof. For any function f(x) = β>x, Hölder’s inequality gives

|f(x)| ≤ ‖β‖q‖x‖(q−1)/q ≤ MB.

Further

‖∇f(x)‖∞ = ‖β‖∞ ≤ ‖β‖q ≤ M,

and ‖∇kf(x)‖∞ = 0 for all k ≥ 2. Because max(MB,M) ≤ MB +M , we have
shown that Fq ⊂ Ck

M(B+1) for any k ≥ 0.

This new bound is similar to the Rademacher bounds from Theorem 5.3.1. It
does not have the redundant

√
d-factor that appeared when we treated Fq,M as

a Euclidean class in Section 5.4.3.
A similar analysis also applies to neural networks.

Theorem 5.4.15. For

F =
{
f(x) 7→ W1σ(W2σ(· · · σ(WLx))) : sup

x∈X
max
k≥1

‖∇kf(x)‖∞ ≤ M

}
,

it holds

R(F) . M√
n
.

The bound does not depend on the number of neurons or layers, only on the
smoothness of the networks in the class. So if we can ensure that our optimizer
returns ĥ ∈ F with high probability, we can get relatively sharp generalization
bounds. That’s a big ‘if’, but we gained a useful conceptual insight. We’ll get
back to this later when we discuss overparametrization in more detail.

57

5. Bounds for infinite hypothesis classes

5.5. Vapnik-Chervonenkis dimension
5.5.1. Some context
Statistical learning theory was long dominated by another complexity measure. It
has a surprisingly long history and starts way before modern ML was even think-
able. In the 1960s and 1970s Vladimir Vapnik, along with Alexey Chervonenkis,
developed a formal theory of empirical risk minimization. This work culminated
in two monographs (Vapnik, 1999, 1998) summarizing and synthesizing the main
results and findings. One major achievement was the invention of Support Vector
Machines (SVMs), heavily inspired by the theoretical insights on the driving
forces behind generalization.

The foundation of this development was a complexity measure called Vapnik-
Chervonenkis dimension or just VC dimension.2 Most of the early developments
focused on binary classification problems, and the VC dimension is tailored to
those. An extension for regression problems, the fat-shattering dimension, never
really caught on. Because it often leads to suboptimal bounds, the VC dimension
is in a way superseded by the other measures we discussed. But the VC dimension
is still useful and widely known. Not least because of its historical importance, a
course on statistical learning theory simply can’t do without it. But we’ll keep
our account much shorter than what’s been traditionally found in such courses.

5.5.2. Derivation
Consider a binary classification problem with the 0-1-loss L(y, h(x)) = 1

{
y 6=

h(x)
}
. We’ll take a modern viewpoint and start with the empirical Rademacher

complexity of the loss class L = L ◦ H:

R̂n(L) = Eε

[
sup
h∈H

1
n

∑
i=1

εi1
{
Yi 6= h(Xi)

}]
.

The expectation is over ε only, so (Yi, Xi) are considered fixed for now. Defining

A =
{
a ∈ {0, 1}n : ai = 1

{
Yi 6= h(Xi)

}
, h ∈ H

}
,

we can rewrite this as

R̂n(L) = Eε

[
sup
a∈A

1
n

∑
i=1

εiai

]
.

2Their seminal paper, Vapnik and Chervonenkis (1971), is an English translation of a paper
published a few years earlier in Russian.

58

5. Bounds for infinite hypothesis classes

If A was finite, we could now apply Massart’s lemma to find an upper bound:

E

[
max
a∈A

1
n

n∑
i=1

εiai

]
≤
√

2 ln |A|
n

.

But A is finite! There are at most 2n possibilities for the vector a ∈ {0, 1}n.
Plugging this into the bound gives R̂n(L) ≤

√
2 ln 2. Unfortunately, the bound

is useless because it doesn’t decrease in n. The size of A is additionally limited
by the capacity of H. For most ML algorithms, the set A is much smaller than
2n, so we may get meaningful bounds. An additional complication is that the
size of A depends on the realizations of (Yi, Xi)n

i=1. This motivates the following
definition.

Definition 5.5.1. The growth function Γn(H) is defined as

Γn(H) = sup
x1,...,xn∈X

∣∣∣{(h(x1), . . . , h(xn)
)

: h ∈ H}
∣∣∣.

Now Massart’s lemma immediately gives the bound

Rn(L) ≤
√

2 ln Γn(H)
n

.

The growth function does not depend on the probability measure P . It is a
purely combinatorial measure of H’s capacity. It counts how many possible
configurations a classifier h ∈ H can take on an arbitrary data set of size n. If
there is a data set, where any prediction pattern is possible, we have Γn(H) = 2n.
We say that H shatters a set of n points. To make the bound above useful, we
need Γn(H) < 2n. There is more hope for this when n is large because h needs
to generate more patterns. The largest n where all patterns can be generated is
the VC dimension.

Definition 5.5.2.

1. The VC dimension is defined as

VC(H) = sup{n ∈ N : Γn(H) = 2n}.

2. H is called a VC class if VC(H) < ∞.

5.5.3. Examples and Implications
Example 5.5.3. Suppose X = R2 and define the class of linear classification
rules

H =
{
h(x) = sign(β0 + β1x1 + β2x2) : β1, β2 ∈ R

}
.

59

5. Bounds for infinite hypothesis classes

Figure 5.7.: Three points in R2 can be shattered by linear hypotheses.

Figure 5.8.: No four points in R2 can be shattered by linear hypotheses.

Fig. 5.7 shows an arrangement of three points that is shattered by H. The
hypothesis class H can generate all possible classification patterns on these points
and, thus, Γn(H) = 2n. If we add another point, the points can no longer be
shattered (Fig. 5.8). Assuming that the points form a trapezoid, it is not possible
to label opposite corners differently. If they don’t form a trapezoid, then either
three points lie on a line segment or one point is in the interior of a triangle.
In both cases, it is impossible to generate all combinations. We have shown that
VC(H) = 3.

Example 5.5.4. In general, the VC-dimension is unrelated to the number of
parameters in a class. A famous example is the class

H =
{
h : R → R, h(x) = sign

(
sin(ax)

)
: a ∈ R

}
.

It has only one parameter, but VC(H) = ∞: on n given points, any pattern can
be generated by choosing the frequency a large enough.

When n hits the VC-dimension, a surprising phase shift occurs. The growth
function becomes polynomial.

60

5. Bounds for infinite hypothesis classes

Lemma 5.5.5 (Sauer’s lemma). It always holds

Γn(H)

= 2n, n ≤ VC(H),

≤
(

3n
VC(H)

)VC(H)

, n > VC(H).

This implies

Rn(L) ≤
√

2 VC(H) ln(3n/VC(H))
n

.

The lnn term can again be removed. The easiest way to do this is to invoke
Dudley’s entropy integral. This is possible because the VC-dimension allows to
upper bound the covering number. The full proof of the following result is quite
tedious, see Van der Vaart and Wellner (1996, Theorem 2.6.7).

Theorem 5.5.6. There exist universal constants C,K < ∞ such that for all
ε ∈ [0, 1),

sup
Q
N
(
ε,H, ‖ · ‖L2(Q)

)
≤ CKVC(H) VC(H)

(
1
ε

)2 VC(H)

.

Proof (optional). We can prove a slightly looser bound with less effort. The idea is actually quite nice.

• First we relate the L2(Q)-norm to a probability:

‖`1 − `2‖2
L2(Q) = E[|`1(Z) − `2(Z)|2] = E[|`1(Z) − `2(Z)|] = PQ{h1(X) 6= h2(X)}.

• Then we construct an ε-packing of H, a collection ε-balls that have centers inside H but do not touch.
That is, there are h1, . . . , hM such that

‖hi − hj‖L2(Q) > ε.

The maximal number M = M(ε, H, ‖ · ‖L2(Q)) we can pack into H is related to the covering number via

N(2ε, H, ‖ · ‖L2(Q)) ≤ M(ε, H, ‖ · ‖L2(Q)) ≤ N(ε, H, ‖ · ‖L2(Q)).

• Now we relate the packing number to the growth function. We will see that for n = ln M2/ε2, there is
a configuration x1, . . . , xn such that |{(h(x1), . . . , h(xn)) : h ∈ H}| ≥ M . It thus holds

N(2ε) ≤ M(ε) ≤ |{(h(x1), . . . , h(xn)) : h ∈ H}| ≤ Γn(H).

Using Sauer’s lemma Lemma 5.5.5, this gives

N(2ε) ≤
(3n

VC(H)

)VC(H)
≤
(3 ln N(2ε)2

VC(H)

)VC(H)(1
ε

)2 VC(H)
.

The bound isn’t perfect, because N(2ε) shows also up on the right. Because it only comes in logarith-
mically, this factor is almost negligible compared to the ε−2-term. This is as good as it gets with our
“simple’ method.

61

5. Bounds for infinite hypothesis classes

• To show that such x1, . . . , xn exists, we use the probabilistic method: We show that the existence of
such x1, . . . , xn has non-zero probability, so it must exist. For X1, . . . , Xn

iid∼ Q, we have

P
(

|{(h(X1), . . . , h(Xn)) : h ∈ H}| ≥ M

)
≥ P
(

∀i, j : (hi(X1), . . . , hi(Xn)) 6= (hj(X1), . . . , hj(Xn))
)

= 1 − P
(

∃i, j : (hi(X1), . . . , hi(Xn)) = (hj(X1), . . . , hj(Xn))
)

≥ 1 −
∑
i<j

P
(

(hi(X1), . . . , hi(Xn)) = (hj(X1), . . . , hj(Xn))
)

= 1 −
∑
i<j

P
(

hi(X1) = hj(X1)
)n

Because
P
(

hi(X1) 6= hj(X1)
)

= ‖`1 − `2‖2
L2(Q) > ε2,

we have

P
(

hi(X1) = hj(X1)
)n

< (1 − ε2)n ≥ exp(−ε2n)
n=ln M2/ε2

=
1

M2 .

So overall,

P
(

|{(h(X1), . . . , h(Xn)) : h ∈ H}| ≥ M

)
≥ 1 −

(N
2
) 1

M2 ≥
1
2

.

This bound is similar to the definition of Euclidean classes (Definition 5.4.5). In
fact, any VC class is also Euclidean. The Euclidean formulation is more general
though because it also applies to non-binary functions.

There are bounds on the VC dimension on virtually any popular ML algorithm.
Several of the bounds on covering numbers were initially derived that way. Be-
cause we have better tools, we won’t get into that. We’ll end this digression with
a funny result due to Goldberg and Jerrum (1993).

Proposition 5.5.7. Let hθ : Rd → {−1, 1} denote an algorithm that computes
its result with at most K of the following operations: (i) basic real arithmetic
(+,−, ·, /), (ii) if-branches based on (in)equality comparison. Then the class
H = {hθ : θ ∈ Rp} has

VC(H) ≤ 2p(2K + 88).

62

6. Further topics

6.1. Fast rates
When discussing splines in Section 5.3.4, I mentioned that the square loss has
suboptimal scaling. Risk bounds can be improved from O(1/

√
n) to O(1/n).

This can also happen for classification. The rate O(1/
√
n) is sometimes called

the slow rate and everything faster than that a fast rate. So how do we improve
the rate?

6.1.1. Intuition
Let’s outline the central idea. Recall the basic bound from Proposition 3.2.1 and
let h∗ = arg minh∈H R(h) be the best hypothesis in the class. For an algorithm ĥ
with Rn(ĥ) −Rn(h∗) ≤ 0, we have

R(ĥ) −R(h∗) ≤ sup
h∈H

[
R(h) −Rn(h)

]
−
[
R(h∗) −Rn(h∗)

]
.

Assuming that the loss function L is Lipschitz (as in Lemma 5.2.5), this leads to
the bound

R(ĥ) −R(h∗) . Rn(H) w.h.p., (6.1)

which is normally of order O(1/
√
n). The bound is quite pessimistic because we

take the supremum over all of H. What if ĥ concentrates on a rather small subset
H′ of H? Then we could restrict the supremum to this subset and potentially
get the tighter bound

R(ĥ) −R(h∗) . Rn(H′) w.h.p. (6.2)

We can take this to the extreme. If ĥ would converge to h∗, then the set H′ would
become smaller and smaller as n grows. For fixed H, the Rademacher complexity
normally decays like Rn(H) = O(1/

√
n). By factoring in the decrease in the size

of H′, we may be able to prove fast rates.
So how do we make sure that ĥ concentrates? Our bound (6.1) already restricts

where ĥ lives ins some sense: ĥ lies with high probability in the set

H′ = {h ∈ H : R(h) −R(h∗) . Rn(H)}.

63

6. Further topics

Figure 6.1.: Fast rates may arise from iteratively constraining the set where ĥ
lies (with high probability).

This is illustrated in Fig. 6.1. Now we can iterate the same argument and show

R(ĥ) −R(h∗) . Rn(H′′) w.h.p..

for
H′′ = {h ∈ H : R(h) −R(h∗) . Rn(H′)},

and so forth. We get fast rates, if the complexity of

Hr = {h ∈ H : R(h) −R(h∗) ≤ r}

decreases quick enough with its “radius” r.

6.1.2. Formal result
We will now make our intuition formal. Our argument above has a subtle issue.
The first bound (6.1) is still OK, the second (6.2) is not. We implicitly conditioned
on an event E = {R(ĥ) − R(h∗) ≤ r}. This event is not independent of the
random variables Rn(h). In particular, the samples (Zi)n

i=1 aren’t independent
conditionally on E, which invalidates our concentration inequalities.

There’s a smart way to work around this. Instead of conditioning, we slice the
hypothesis space into shells

Sk =
{
h ∈ H : 2kan < R(h) −R(h∗) ≤ 2k+1an

}
,

where an is the convergence rate we aim for, e.g., an = 1/n. This is illustrated
in Fig. 6.2. You can now think of the hypothesis space H as an onion. Its core
{h ∈ H : R(h) − R(h∗) ≤ 2Man} is surrounded by a sequence of small shells
SM ,SM+1, We want to show that ĥ most likely falls inside the core. We can

64

6. Further topics

Figure 6.2.: The formal proof slices the hypothesis space into infinitely many
shells Sk and bound the excess risk probability by peeling them off.

peel off the shells Sk around the core one by one and bound the probabilities
P(ĥ ∈ Sk) individually. In particular, we have

P
{
R(ĥ) −R(h∗) > 2Man

}
=

∞∑
k=M

P
{
ĥ ∈ Sk

}
.

In each shell, the excess risk R(ĥ) − R(h∗) is upper and lower bounded. This
allows us to restrict the supremum of R(h) − Rn(h) to a smaller set without
conditioning. The full proof will be given at the end of this section.

Theorem 6.1.1. Assume the loss function is Lipschitz and there are C < ∞
and α ∈ [0, 1] such that

Rn(H) ≤ C

√
1
n

and Rn(Hr) ≤ C

√
rα

n
. (6.3)

Then with probability at least 1 − δ,

R(ĥ) −R(h∗) .
(

(C/δ)2

n

) 1
2−α

.

Let’s compare this to a standard bound implied by Theorem 5.2.4 and (6.3):

R(ĥ) −R(h∗) . C

(
ln(1/δ)
n

) 1
2

. (6.4)

65

6. Further topics

We distinguish three cases:

• Case α = 0: Theorem 6.1.1 gives

R(ĥ) −R(h∗) . C

(
1/δ2

n

) 1
2

.

The scaling in C and n is the same, but the scaling in δ is worse than our
old bound (6.4). It scales like O(1/δ2) instead of O(ln(1/δ)). This is an
artifact of the proof. The scaling can often be improved by more tedious
arguments involving Talagrand’s inequality (see, e.g., Bousquet et al., 2004,
Section 6.4), a generalization of McDiarmid’s inequality that also takes the
variance into account.

• Case α = 1: Theorem 6.1.1 gives

R(ĥ) −R(h∗) . C2/δ2

n
.

Apart from the scaling in δ, we have essentially squared the old bound (6.4).
In particular, we have the fast rate O(1/n) instead of O(1/

√
n). This is

traded off by a worse dependence in C. This trade-off is unavoidable.

• Case α ∈ (0, 1): This case interpolates between the two extremes and gives
fast rates of the order O(1/n2−α).

We can achieve a fast rate when condition (6.3) is satisfied with α > 0. The
constant C is normally related to the complexity of the full class H. The relative
influence of C and n is the same, irrespective of α. That’s why we’re often
satisfied with studying cruder bounds with slow rates. Apart from the exact rate
of convergence, they provide the same insight but are much easier to derive.
Proof of Theorem 6.1.1 (optional). We start by rewriting the probabilities. Define an = n−1/(2−α) and the
shells

Sk =
{

h ∈ H : 2kan < R(h) − R(h∗) ≤ 2k+1an

}
.

Then ĥ ∈ Sk implies

1Sk
(̂h)[R(̂h) − R(h∗)] > 2kan.

Since Rn (̂h) ≤ Rn(h∗), we have

R(̂h) − R(h∗) = (R − Rn)(̂h) − (R − Rn)(h∗) + Rn (̂h) − Rn(h∗) ≤ (R − Rn)(̂h) − (R − Rn)(h∗)
= (P − Pn)(`

ĥ
− `h∗),

where `h = L ◦ h. Note that (P − Pn)(`
ĥ

− `h∗) ≥ 0 because R(̂h) ≥ R(h∗) by definition of h∗. Then also
suph∈S(P − Pn)(`h − `h∗) is positive and Markov’s inequality gives

P
{

ĥ ∈ Sk

}
≤ P
{
1Sk

(̂h)[R(̂h) − R(h∗)] > 2kan

}
≤ P
{

sup
h∈Sk

(P − Pn)(`h − `h∗) > 2kan

}

66

6. Further topics

≤
E
[
suph∈Sk

(P − Pn)(`h − `h∗)
]

2kan
.

Defining Lk = {`h : h ∈ Sk}, we have

E
[

sup
h∈Sk

(P − Pn)(`h − `h∗)
]
. Rn(Lk − `h∗) = Rn(Lk) . Rn(Sk),

where we used shift invariance of Rn (Proposition 5.2.9 iii) in the second and the contraction lemma (Lemma 5.2.5)
in the third step.

Since Sk ⊂ {h : R(h) − R(h∗) ≤ 2k+1an}, assumption Eq. (6.3) gives

Rn(Sk) . C

√
2kαaα

n

n
.

Altogether, we have shown

P
{

ĥ ∈ Sk

}
.

2kα/2C
√

aα
n/n

2kan
= 2−k(1−α/2)C.

Summing up the probabilities,

P
{

R(̂h) − R(h∗) ≥ 2M /n
}

=
∞∑

k=M

P
{

ĥ ∈ Sk

}
. C

∞∑
k=M

2−k(1−α/2) . C2−M(1−α/2),

by the geometric series. Choosing 2−M = (δ/C)2/(2−α), we have shown that with probability at least 1 − δ,

R(̂h) − R(h∗) .
(

C

δ

)2/(2−α)
an.

6.1.3. When fast rates are possible
So how do we establish a condition like (6.3)? A typical strategy consists of two
ingredients. The first relates the excess risk to the L2(P)-norm on H. Suppose
the loss function L is such that

R(h) −R(h∗) & ‖h− h∗‖κ
L2(P), (6.5)

for some κ > 0. The estimation error R(ĥ) − R(h∗) upper bounds the L2(P)-
distance between ĥ and h∗. So if the estimation error is small, ĥ concentrates on
a small L2(P)−neighborhood of h∗. The radius of this neighborhood shows up
in a version of Dudley’s covering entropy bound (see, Van der Vaart and Wellner,
1996, Lemma 3.4.2, for a version with bracketing entropy).

Lemma 6.1.2. For Hr = {h ∈ H : ‖h−h∗‖κ
L2(P) ≤ r} and suph∈H ‖h‖∞ < ∞,

it holds

Rn(Hr) .
J(r1/κ,H)√

n
+ J(r1/κ,H)2

r2/κn
,

where J(δ,H) =
∫ δ

0 supQ

√
lnN(ε,H, L2(Q)dε.

67

6. Further topics

Example 6.1.3. As an example, Euclidean classes (Definition 5.4.5) satisfy (up
to logarithmic factors)

J(r,H) . r
√
V .

Substituting in Lemma 6.1.2 gives

J(r1/2,H)√
n

+ J(r1/2,H)2

rn
.

√
r2/κV

n
+ V

n
.

√
r2/κV

n
, (assuming r2/κ ≥ V/n)

so condition (6.3) holds with α = 2/κ. Under condition (6.5), the risk of Euclidean
classes of algorithms converges at the fast rate O(n−1/(2−2/κ)).

The question remains when a condition like (6.5) holds. Mean regression and
classification are two important examples.

Mean regression

Consider the square loss L(y, h(x)) = (y − h(x))2. Assume for simplicity that

Y = h∗(X) + ε, E[ε | X] = 0,

for some function h∗ ∈ H. Because the noise ε is unavoidable, there is a minimum
risk that all h ∈ H share. It disappears when we look at the difference between
two risks. The difference is a pure distance measure between h and h∗, irrespective
of the noise.

Lemma 6.1.4. The square risk satisfies

R(h) −R(h∗) = ‖h− h∗‖2
L2(P).

Proof. Exercise.

The scaling of the square-loss translates into a squared scaling for the error
ĥ − h∗. That’s why fast rates are possible. This shouldn’t be surprising. For
example, take the linear regression model hβ(x) = β>x. The OLS estimator
satisfies β̂ − β = O(1/

√
n). Then Lemma 6.1.4 implies

R(h
β̂
) −R(hβ∗) = ‖h

β̂
− hβ∗‖L2(P) = O(‖β̂ − β‖2) = O(1/n).

We could’ve derived this already in an early course on statistical inference. Our
results here are much more general. We now know that empirical risk minimizers
over Euclidean hypothesis classes achieve a fast rate. In particular, Theorem 6.1.1
also applies to basis expansions and tree ensembles. Because the rate is now sharp,
the bounds can be used to determine optimal hyperparameters as in Section 5.3.4
and exact convergence rates.

68

6. Further topics

Binary classification

Now consider binary classification with the 0-1 loss L(y, h(x)) = 1{y 6= h(x)},
where h : X → {−1, 1}. Denote η(x) = P (Y = 1 | X = x) and the Bayes’
classifier by

h∗(x) = sign[η(x) − 1/2].

The corresponding excess risk is

R(h) −R(h0) = P{Y 6= sign h(X)} − P{Y 6= sign h0(X)}.

Lemma 6.1.5. If

c := inf
x∈X

|η(x) − 1/2| > 0, (6.6)

the 0-1-risk satisfies

R(h) −R(h∗) ≥ c

4‖h− h∗‖2
L2(P).

Proof (optional). First note that

R(h) = EY,X [1{Y 6= h(X)}] = EX

[
η(X)1{1 6= h(X)} + [1 − η(X)]1{−1 6= h(X)}

]
= EX

[
η(X)1{1 6= h(X)} + [1 − η(X)][1 − 1{1 6= h(X)}]

]
= EX

[
[2η(X) − 1]1{1 6= h(X)}

]
+ 1 − EX [η(X)].

Therefore,

R(h) − R(h∗) = EX

[
[2η(X) − 1][1{1 6= h(X)} − 1{1 6= h∗(X)}]

]
= EX

[
|2η(X) − 1|1{h(X) 6= h∗(X)}

]
,

where the last equality comes from the Bayes classifier h∗ predicting 1 if and only if 2η(X) − 1 ≥ 0. Massart’s
condition (6.6) now gives

R(h) − R(h∗) ≥ cP{h(X) 6= h∗(X)}
]

=
c

4
E[|h(X) − h∗(X)|2] =

c

4
‖h − h∗‖2

L2(P).

Equation (6.6) is known as Massart’s noise condition and has an intuitive inter-
pretation. It forces the true class probabilities η(x) and 1 − η(x) away from 1/2.
Samples with η(x) = 1/2 are considered hard because it’s impossible to do better
than random guessing. When η(x) is bounded away from 1/2, the classification
task is much easier. Why? An algorithm ĥ (implicitly or explicitly) estimates the
probability η(x) by η̂(x) = 1/2+ ĥ(x) and returns sign ĥ(x) = sign[η̂(x)−1/2]. If
c > 0, estimation errors |η̂(x)−η(x)| smaller than c become completely irrelevant.
Hence, we can get away with relatively large estimation errors and still classify
optimally.

An important case where Massart’s condition applies is when the problem is
realizable, i.e., P(Y = 1 | X) ∈ {0, 1}. Here the Bayes classifier makes zero errors,
so realizable classification problems are maximally easy. In other situations,
the condition is rather unrealistic. For example, it excludes cases where η is a

69

6. Further topics

γ = 0.2 γ = 1 γ = 100

−1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0 −1.0 −0.5 0.0 0.5 1.0

0.00

0.25

0.50

0.75

1.00

x

η(
x)

Figure 6.3.: Visualization of the “easiness parameter” γ in Tsybakov’s noise
condition. The graphs show the true classification probability
η(x) = P(Y = 1 | X = x) under three noise scenarios.

continuous function ranging from -1 to 1. To get fast rates, it is enough that the
region of X where η(x) ≈ 1/2 is small.

Lemma 6.1.6. If for every t > 0 and some γ > 0, C < ∞,

P{|η(X) − 1/2| ≤ t} ≤ Ctγ, (6.7)

the 0-1-risk satisfies

R(h) −R(h∗) ≥ 8(8C)−1/γ‖h− h∗‖2+2/γ
L2(P) .

Proof (optional). The proof is similar to Lemma 6.1.5, but using the new noise condition in the last step:

R(h) − R(h∗) = EX

[
|2η(X) − 1|1{h(X) 6= h∗(X)}

]
≥ tEX

[
1{h(X) 6= h∗(X)}1{|2η(X) − 1| ≥ t}

]
≥ tEX

[
1{h(X) 6= h∗(X)}

]
− tEX [1{|2η(X) − 1| ≤ t}]

≥ tEX

[
1{h(X) 6= h∗(X)}

]
− Ctγ+1

≥ t
1
4

‖h − h∗‖2
L2(P) − Ctγ+1.

Now choose t = (8C)−1/γ‖h − h∗‖2/γ

L2(P).

Equation Eq. (6.7) is Tsybakov’s noise condition. Lemma 6.1.5 can be seen as a
special case with γ = ∞. Condition (6.7) ensures that areas with η(X) ≈ 1/2 have
low probability. The condition is illustrated in Fig. 6.3 for X ∼ Uniform[−1, 1]
and three functions η(x) with γ = 0.2, 1, 100. When γ is large, the classification
problem is easy. Most samples x quite clearly belong to either class -1 or 1. On
the other hand, when γ is small, there is a fairly large region around x = 0, where
it’s hard to do better than random guessing.

Example 6.1.7. An application of Theorem 6.1.1 and Lemma 6.1.2 to Euclidean
classes now gives the fast rate O(n−(1+γ)/(2+γ)). The “easiness” parameter γ

70

6. Further topics

interpolates between O(1/n) under Massart noise (γ = ∞) and the slow rate
O(1/

√
n) for γ = 0.

6.1.4. Application
Let us revisit the ridge regression example from Section 5.3.1. Recall Z = Rd

and consider the class of norm-constrained linear functions

H2,M,r = {z 7→ β>z : ‖β‖2 ≤ M, ‖β − β∗‖2
2 ≤ r}.

Proposition 6.1.8. It holds

Rn(H2,M,r) ≤
√
rE[‖Z‖2

2]
n

,

and β̂ = arg min‖β‖2≤M Rn(β) satisfies

R(β̂) −R(β∗) . M2E[‖Z‖2
2]

n
w.h.p.

Proof. Here’s a proof outline; you’ll the gaps in the exercises.

1. Observe (why?)

E

[
sup

‖β‖2≤M

n∑
i=1

εiβ
>Zi

]
= E

[
sup

‖β‖2≤M

n∑
i=1

εi(β − β∗)>Zi

]
.

2. Adjust the first steps in the proof of Theorem 5.3.1 to show

Rn(H2,M,r) ≤
√
r

n
E

[∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
2

]
.

3. Together with

E

[∥∥∥∥∥
n∑

i=1
εiZi

∥∥∥∥∥
2

]
≤

√
nE[‖Z‖2

2].

(already shown in Theorem 5.3.1) we can now invoke Theorem 6.1.1 with
α = 1 and C = M

√
E[‖Z‖2

2].

This is essentially the squared versions of the bound obtained in Section 5.3.1.
So a qualititive interpretation of the bounds would lead to the same conclusions.

71

6. Further topics

m = 5 m = 10 m = 20

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

−2.5

0.0

2.5

5.0

x

y

Figure 6.4.: Approximation of a function with piece-wise constant functions on
m intervals.

6.2. Approximation error
Recall from (3.1) that

R(ĥ) −R0 = R(ĥ) −R(h∗)︸ ︷︷ ︸
estimation error

+R(h∗) −R(h0)︸ ︷︷ ︸
approximation error

,

where h∗ = arg minh∈H R(h) is the best hypothesis in class and h0 = arg minR(h0)
the best hypothesis possible. We have gone a long way bounding the estimation
error. Except for a small digression in Section 5.3.4. We haven’t spoken much
about the approximation error. This error is deterministic, so the laws of proba-
bility don’t help much in its analysis. Bounding the approximation error for given
H is subject of the mathematical field of approximation theory. An in-depth
analysis requires new concepts and tools, which go beyond the scope of this course.
Another issue is that each approximation method requires a tailor-made analysis.
We’ll be satisfied with a discussion of the key ideas. Since almost always

R(h∗) −R(h0) . sup
x∈X

|h∗(x) − h0(x)|a =: ‖h∗ − h0‖a
∞, a > 0,

for some a > 0, we bound the term on the right to avoid getting distracted by
different loss functions.

6.2.1. Pice-wise constant functions
Let’s start with a simple function class. Let X = [0, 1] and

Hm =
{
hβ(x) =

m∑
k=1

βk1[ξk−1,ξk)(x) : β ∈ Rm

}
,

be the set of functions that are piece-wise constant on the intervals [ξk−1, ξk),
where we take ξ0 = 0 and ξm = 1.1 by convention. Zero-degree splines and
partition trees are of that form. If h0 is smooth, we can find successively closer

72

6. Further topics

m = 5 m = 10 m = 20

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
−5.0

−2.5

0.0

2.5

5.0

x

y

Figure 6.5.: Approximation of a function with piece-wise linear functions on m
intervals.

approximations hβ by takingm → ∞. This is illustrated in Fig. 6.4 and formalized
in the following.

Theorem 6.2.1. Let h0 : [0, 1] → R be a Lipschitz continuous function, i.e,

|h0(x) − h0(x′)| ≤ K|x− x′| for all x, x′ ∈ [0, 1].

Then for any ε > 0, there are (ξk)m
k=0 and β ∈ Rm with m = O(ε−1) such that

‖h0(x) − hβ(x)‖∞ ≤ ε.

Proof. Let x be arbitrary, ξj = j/m, and k be the index with x ∈ [k/m, (k+1)/m).
Setting βk = h0(k/m) and noting |x− k/m| ≤ 1/m, we have

|h(x) − hβ(x)| = |h0(x) − βk| = |h0(x) − h(k/m)|
≤ K|x− k/m| (h is K-Lipschitz)
≤ K/m.

The theorem shows that we can approximate h0 to arbitrary accuracy, provided we
choose m large enough. The more accurate we want to be, the more intervals we
need. In the context of risk minimization, the function with f ∗

β = arg minβ∗ R(hβ)
has risk at most as high as the approximating function found in Theorem 6.2.1.
If the loss function L is Lipschitz with respect to h, then R(hβ∗) −R(hβ0) . 1/m.
For the square loss, we would get R(hβ∗) −R(hβ0) . 1/m2.

6.2.2. Exploiting higher-order smoothness
An important assumption of the theorem is that h0 is K-Lipschitz. The smooth-
ness of the target function plays a big role in approximation theory. There are
several definitions of smoothness, typically related to the existence and bound-
edness of derivatives. Smoother functions are easier to approximate. Knowing
that a function is smooth calls for an inductive bias in our hypothesis class. By

73

6. Further topics

exploiting smoothness in the way we construct approximations, we can typically
achieve higher accuracy with fewer parameters. For example, the piece-wise linear
approximations in Fig. 6.5 appear to converge much faster to the true function
than the piece-wise constant approximations in Fig. 6.5.

Let’s see why that is the case. Denote by Cs
K([0, 1]) the set of all q-times

continuously differentiable functions [0, 1] → R with all derivatives bounded
uniformly by K. Assume for example that h0 ∈ C2

K([0, 1]). For any fixed
x′ ∈ [0, 1], a Taylor expansion gives

h0(x) = h0(x′) + h
(1)
0 (x′)(x− x′) +Rn,

with |Rn| ≤ K|x − x′|2. So on any interval [k/m, (k + 1)/m), there is a linear
function x 7→ βk,1 + βk,2x, such that

|h0(x) − βk,1 + βk,2x| ≤ K|x− x′|2 ≤ K/m2.

This indeed has better dependence onm than a piece-wise constant approximation.
The following result can be derived from higher-order Taylor expansions.

Theorem 6.2.2. Let h0 ∈ Cs
K([0, 1]). Then there are (ξk)m

k=0 and a piece-wise
polynomial hβ of degree s− 1 with m = O(ε−1/s) such that

sup
x∈[0,1]

|h0(x) − hβ(x)| ≤ ε.

B-splines form a basis for piece-wise polynomials that satisfy additional smooth-
ness constraints. With quite some additional effort, a result like Theorem 6.2.2
can also be derived for this restricted class (with the same scaling in m).

6.2.3. The curse of dimensionality
So far we have only talked about univariate functions. For multi-dimensional x,
a new effect kicks in. Multivariate functions are more complex and harder to
approximate. This is known as the curse of dimensionality.

The cause of the curse is illustrated in Fig. 6.6. For univariate x, we partitioned
the interval [0, 1] into m segments of length 1/m. This led to an error of at most
K/m. If we partition each coordinate in [0, 1]d similarly, we get boxes with length
1/m in each coordinate. On each box, we can achieve an error of K/m with a
piece-wise constant if h0 is K-Lipschitz. To cover [0, 1]d, we need md such boxes.

We now need md = O(ε−d) parameters to achieve an approximation error of ε
with piece-wise constants.

The same idea applies to piece-wise polynomial approximations of smoother func-
tions, where we need O(ε−d/s) coefficients. Increasing the number of parameters
typically increases the complexity of a function class and this may hurt the gener-
alization error. The curse of dimensionality is unavoidable in general. Smoothness

74

6. Further topics

Figure 6.6.: Covering the unit cube with intervals/boxes with side length 1/3.
We need exponentially more boxes when d is large.

ameliorates the effect of dimension to some degree, but the exponential scaling
in d remains. To overcome the curse, we have to assume more structure.

6.2.4. Exploiting sparsity
The term ‘sparsity’ has a variety of meanings depending on the context. In
our setting, it roughly means that some parts of the problem are irrelevant or
particularly simple. Sparsity often allows approximating functions with fewer
parameters than usual.

Example 6.2.3 (Irrelevant features). Suppose that h0 : [0, 1]d → R is a func-
tion of the first d′ variables only. Then we can cover [0, 1]d′ with O(ε−d′)
boxes Bk. Because the remaining d− d′ variables do not affect the function, a
piece-wise constant on the sets Bk × [0, 1]d−d′ achieves an error of ε with only
O(ε−d′) parameters. See Fig. 6.7 (left) for an illustration.

Example 6.2.4 (Manifold structure). Now suppose that X ⊂ Rd is a d′-
dimensional manifold. That is, X can be covered with O(ε−d′) boxes with
side-length ε. If h0 : X → R is K-Lipschitz, a piece-wise constant function
achieves an error of ε with only O(ε−d′) parameters. See Fig. 6.7 (right) for
an illustration.

Any function h : [0, 1]d → R can be decomposed as

h(x) =
∑

S⊆{1,...,d}
hS(xS),

75

6. Further topics

Figure 6.7.: Exploiting sparsity: an O(ε)-approximating partition when the sec-
ond component of x is irrelevant in h0(x) (left); an ε-covering of a
1-dimensional manifold X only requires O(ε−1) boxes.

where h0,S : [0, 1]|S| → R and xS = (xj)j∈S. To see this, take h{1,...,d}(x) = h(x)
and hS(x) = 0 for S 6= {1, . . . , d}. But other decompositions are possible. For
example, the so-called functional ANOVA decomposition has

h∅ =
∫
h(x)dx

h{j}(xj) =
∫
h(x)

∏
k 6=j

dxk − h∅,

h{i,j}(xi, xj) =
∫
h(x)

∏
k 6=i,j

dxk − h{i}(xi) − h{j}(xj) + h∅

. . .

The functions hS can be understood as ‘interactions’ between the variables in the
set S.

76

6. Further topics

Example 6.2.5 (Limited interaction). A function h0 has limited interaction
if we can write it as

h0(x) =
∑

S⊆{1,...,d},|S|≤r

h0,S(xS), for some r < d.

In the special case r = 1, we call h0 additive, because

h0(x) = h0,∅ + h0,1(x1) + · · · + h0,d(xd).

To exploit this type of sparsity, we can approximate each interaction function
h0,S separately with a piece-wise constant using at most O(ε−r) parameters by
Example 6.2.3. Summing the approximation functions gives overall approxi-
mation error ε with a total of O(ε−r) parameters.

6.2.5. The effectiveness of neural networks
Recall that an L-layer feed-forward neural network can be written recursively as

hβ(x) = W (L)x(L−1) + b(L),

where

x(`) = σ(W (`)x(`−1) + b(`)), ` = 1, . . . , L− 1,

and x(0) = x. The parameter

β = (W (1), b(1), . . . ,W (L), b(L)),

collects all weight matrices W (`) ∈ RN`×N`−1 and biases b` ∈ RN` . The activation
function σ is applied componentwise to vectors.

Neural networks are particularly powerful approximators. The study of their
expressivity has a long history. We shall only take a glimpse into the vast
literature; a recent review can be found in Gühring et al. (2020). In 1989,
several independent works showed that neural networks are universal function
approximators.

Theorem 6.2.6 (Universal approximation theorem). Let h0 : [0, 1]d → R be a
continuous function and the activation function σ be non-polynomial. Then
there is a two-layer neural network h such that ‖h0 − h‖∞ ≤ ε.

To be more precise, one can show that one needs O(ε−d/s) neurons in the
hidden layer to approximate a Cs

K([0, 1]d) function. This is the same scaling
as for piece-wise polynomials. In practice, two-layer neural networks are rarely
used. Deep networks have additional benefits. One can show that networks with
fixed width but unlimited depth are also universal function approximators. By

77

6. Further topics

trading off width and depth, there are often more efficient (= fewer parameters)
approximations than when fixing width or depth. To prove such results, one first
shows that a shallow neural network can approximate the basis functions of an
appropriate system (for example, polynomials, splines, or wavelets). Then such
small networks are stacked together and combined in the output layer to give a
global approximation.

Deep networks can also efficiently adapt to the types of sparsity discussed in
the previous section. An important case where deep networks shine is when h0
has a compositional structure. For example, assume x ∈ [0, 1]d and

h0(x) = h1

(
h2,1(x1, x2), h2,2(x3, x4)

)
.

To approximate this function, construct three separate networks approximating
h1, h2,1, and h2,2. Then stack the two latter networks and feed their outputs into
the network approximating h1. If all functions are Lipschitz, we require only
O(ε−2) parameters. With shallow networks, this compositional construction isn’t
possible and we need O(ε−d) = O(ε−4) parameters. We’d also need so many
coefficients in spline, wavelet, and other linear basis expansions.

In summary, neural networks can efficiently approximate various function
classes and adapt to a variety of smoothness and sparsity patterns.

6.3. Lower bounds and minimax risk
6.3.1. Motivation
A combination of bounds on the approximation and estimation error gives us
upper bounds for the excess risk R(ĥ) −R(h0). Recall again that

R(ĥ) −R0 = R(ĥ) −R(h∗)︸ ︷︷ ︸
estimation error

+R(h∗) −R(h0)︸ ︷︷ ︸
approximation error

,

A combination of bounds on the estimation and approximation error gives us
upper bounds for the excess risk R(ĥ) − R(h0). The estimation error grows in
the complexity C(H) of the hypothesis class; the approximation error decreases.
Combining bounds on both normally gives something like

R(ĥ) −R0 .

(
C(H)
n

)a

︸ ︷︷ ︸
estimation error

+
(

1
C(H)

)b

︸ ︷︷ ︸
approximation error

.

Depending on the exponents a and b, verify that the optimal complexity and rate
of convergence are

C(H)∗ ∝ na/(a+b), R(ĥ) −R0 . n−ab/(a+b).

78

6. Further topics

For any given algorithm, we can use estimation/approximation error bounds to
find a and b. But how do we know whether the bound/algorithm is good? Simply
choosing ĥ = h0 gives zero excess risk. So is any algorithm that doesn’t have
zero excess risk bad? Of course not. Choosing ĥ = h0 isn’t practical because h0
depends on the unknown probability measure P . In reality, we construct ĥ by
running an algorithm A on observed data Dn = (Zi)n

i=1. We want this algorithm
to work for many different distributions P ∈ P simultaneously. In that case,
there are limits on what’s possible.

We’ve already seen an extreme example in the no-free-lunch theorem (Theo-
rem 2.6.1). But even when learning is possible for a class of probabilities P , there
are lower bounds on how fast we can learn. The smallest risk that is achievable
uniformly over P is called minimax risk. It minimizes (over algorithms) the
maximum (over probability measures) risk. In the following, we formalize this
notion, discuss some known lower bounds, and how they can be derived.

6.3.2. Definition
To simplify matters, let’s consider the expected risk in what follows. Let P be a
set of probability measures on Z, Dn a data set generated iid from P ∈ P , and
ĥ = A(Dn) the output of the algorithm A. Denote the function/parameter of
interest as h0 = hP . We are interested in bounds on the worst-case excess risk

sup
P ∈P

EP

[
RP (A(Dn)) −RP (hP)

]
.

The expectation is over the random output ĥ of the algorithm A(Dn). Here,
‘algorithm’ simply means ‘function of Dn’. Also the risk functionals RP depend on
the probability measure P , because RP (h) = EZ∼P [L(Z, h(Z))]. This dependence
is somewhat annoying, so it is customary to write this in a slightly different way.

Definition 6.3.1. Let d(h, h′) be some measure of distance between h, h′. The
minimax risk with respect to d is defined as

R∗
n(P) = inf

ĥ

sup
P ∈P

EP [d(ĥ, hP)],

where the infimum is taken over all algorithms A producing ĥ.

The risk is called minimax because we minimize over the algorithm A and
maximize over the probability measure P ∈ P .

It’s hard to compute the minimax risk exactly. Instead, we aim for matching
lower and upper bounds (up to constants).

79

6. Further topics

Definition 6.3.2. If there constants c, C with 0 < c ≤ C < ∞ and

can ≤ inf
ĥ

sup
P ∈P

EP [d(ĥ, hP)] ≤ Can,

we call an the minimax rate of convergence. Any algorithm ĥ attaining
the upper bound is called minimax optimal.

For the upper bound, we just have to find an algorithm that attains the rate an.
For the lower bounds, we need new tools.

6.3.3. Lower bounds for the minimax risk
Let’s start with some intuition. Suppose that there are two distributions P1, P2
that are very similar, but the true hypotheses h1, h2 implied by P1, P2 are far
apart. Then any algorithm will have a hard time distinguishing between a data
set from P1 and a data set from P2. It’s difficult to decide whether it should put
ĥ closer to h1 or h2. Because the hypotheses are far apart, the algorithm cannot
produce a hypothesis that is close to both. So the maximal risk over {P1, P2}
has to be large.

More formally, suppose that d(h1, h2) ≥ ∆ > 0. The triangle inequality implies

∆ ≤ d(h1, h2) ≤ d(ĥ, h1) + d(ĥ, h2) ≤ 2 max{d(ĥ, h1), d(ĥ, h2)},

so any ĥ must satisfy max{d(ĥ, h1), d(ĥ, h2)} ≥ ∆/2. A convenient measure of
similarity between two probability measures is the Kullback-Leibler divergence or
just KL-divergence:

KL(P1 || P2) =
∫

log
(
dP1(z)
dP2(z)

)
dP1(z).

You can think of dP as the density or probability mass function, depending on
whether Z is continuous or discrete. We normally prove lower bounds with simple
distributions.

Example 6.3.3 (KL divergence of Gaussians). If P1 = N (µ1, σ
2) and P2 =

N (µ2, σ
2), then

KL(P1 || P2) = (µ1 − µ2)2/(2σ2).

Example 6.3.4 (KL divergence of Bernoulli). If P1 = Bernoulli(p1) and
P2 = Bernoulli(p2), then

KL(P1 || P2) = p1 log
(
p1

p2

)
+ (1 − p1) log

(
1 − p1

1 − p2

)

80

6. Further topics

Now we can formalize our intuition above: when P1, P2 are similar but hP1 , hP2

are not, the minimax risk is lower bounded.

Theorem 6.3.5 (Le Cam’s method). For any P1, P2 ∈ P, it holds

inf
ĥ

sup
P ∈P

EP [d(ĥ, hP)] ≥ d(h1, h2)
8 e−nKL(P1||P2).

The lower bound on the right increases in the distance d(ĥ, hP) between h1 and h2
and decreases in the distance KL(P1 || P2) between the corresponding probability
measures. In concrete learning problems, the difficulty is now to find a similar pair
P1, P2 for which h1, h2 are sufficiently separated. As a simple example, suppose
we want to learn the mean µP = EP [Z].

Proposition 6.3.6. Let P be the set of all probability measures with variance
bounded by C < ∞. Then there is a constant c > 0 such that

c√
n

≤ inf
µ̂

sup
P ∈P

EP [|µ̂− µP |] ≤ C√
n
.

In particular, n−1/2 is the minimax rate of convergence and the sample mean is
minimax optimal.

Proof. Define P1 = N (µ1, 1) and P2 = N (µ2, 1) and d(µ1, µ2) = |µ1 −µ2|. Taking
µ1 = µ2 + 1/

√
n, Theorem 6.3.5 and Example 6.3.3 imply

inf
µ̂

sup
P ∈P

EP [|µ̂− µP |] ≥ 1/
√
n

8 e−n×(n−1/2) = c√
n

with c = e−1/2/8. We have found a lower bound for the minimax risk. Finding
an upper bound is easy. The sample mean µ̂ = n−1∑n

i=1 Zi satisfies

EP [|µ̂− µP |] ≤ EP [(µ̂− µP)2]1/2 = VarP [µ̂]1/2 ≤ C√
n
,

for any P ∈ P .

Le Cam’s method is useful when there is a single number to learn. For multi-
dimensional or infinite-dimensional (= learning functions) problems, we need
more than two probability measures to compare. The following result comes in
handy

Theorem 6.3.7 (Fano’s method). For any P1, . . . , PN ∈ P, it holds

inf
ĥ

sup
P ∈P

EP [d(ĥ, hP)] ≥ minj 6=k d(hj, hk)
2

(
1 − nmaxj 6=k KL(Pj || Pk)

logN

)
.

81

6. Further topics

Note that finding any lower bound does not suffice. We need to find the largest
possible lower bound. In many interesting applications, finding appropriate
measures Pj is difficult and the number N of measures needs to grow with n. We
won’t get into that, but you should get the idea.

6.3.4. Some examples
Learning smooth functions

We close with a few examples of known minimax rates. Take P as the set of
measures P with

Y = hP (X) + ε, E[ε | X] = 0,Var[Y] < ∞,

where hP ∈ Cs
K (see Example 5.4.10). We get the following minimax rates:

Distance Sparsity minimax rate
|h1(x) − h2(x)| n−s/(2s+d)

supx |h1(x) − h2(x)| (n/ lnn)−s/(2s+d)∫
|h1(x) − h2(x)|dx n−s/(2s+d)∫
|h1(x) − h2(x)|2dx n−2s/(2s+d)

d′ relevant features n−2s/(2s+d′)

d′-dimensional manifold n−2s/(2s+d′)

additive n−2s/(2s+1)

r-limited interaction n−2s/(2s+r).

Table 6.1.: Minimax rates for regression problems.

Essentially the same rates hold for most other problems where smooth functions
are the target, like quantile regression and density estimation. We can see the
curse of dimensionality acting in these rates, and how sparsity can help.

Classification

Classification is different. The excess risk for the zero-one-loss is

RP (h) −RP (hP) = P{Y 6= h(X)} − P{Y 6= h0(X)}.

We don’t really learn a smooth function hP , but its binarized version sign hP .
This is the same as learning the set SP on which sign hP (x) = 1. In place of
smoothness of the function hP , we care about the complexity of the decision sets
SP . Mammen and Tsybakov (1999) formalized this by the sets’ covering number
for a particular distance satisfying d(S, SP) = RP (h) −RP (hP). Their condition
reads

lnN(ε, SP , d) . ε−ρ for some ρ > 0.

82

6. Further topics

Figure 6.8.: Examples of easy (left) and difficult (right) decision boundaries.

For large ρ we need more balls to cover the decision sets. The collection of sets is
more complex, so this corresponds to harder classification problems. For example,
classes of decision boundaries similar to the one in the left panel of Fig. 6.8 are
easy and can be covered with few balls. Classes of decision boundaries similar to
the right panel are hard.

Recall Tsybakov’s noise condition (6.7),

PX{|2hP (X) − 1/2| ≤ t} ≤ Ctγ,

and that γ > 0 controls the easiness of the problem (large γ is easier). Then the
minimax rate is

an =

n− 1+γ

2+γ(1+ρ) , if ρ < 1,
n− 1

2 lnn, if ρ = 1,
n− 1

1+ρ , if ρ > 1.

We see several interesting effects. The minimax rate is split into three cases
depending on ρ. When ρ is large, the decision boundary of the sets is complicated.
If ρ ≥ 1, we can’t do better than an = 1/

√
n. Tsybakov’s noise condition becomes

irrelevant to the easiness of the problem. If ρ < 1, how good we can do depends
on both the value of ρ and Tsybakov’s exponent γ. If we take γ → ∞, the rate
approaches an = (1/n)1/(1+ρ), which is always better than 1/

√
n. And if ρ is close

to zero, we have an ≈ 1/n. This is the maximally easy case: Samples close to
the decision boundary are unlikely (γ large) and the decision boundary itself is
simple (small ρ).

83

7. Closing remarks
The ‘Further topics’ chapter could go on for a long time: PAC-Bayes, margin
bounds, online learning, implicit regularization, transfer learning, and so on.
Each has their own concepts and ideas. Some of them I might cover in future
iterations. This course focused on core concepts and techniques in learning theory
and provides an entry to current research close to this core.

The current hot topic is understanding the success of deep learning. Most
standard results can’t explain it because bounds are too loose. Here are some
starting points:

• Zhang et al. “Understanding deep learning requires rethinking generaliza-
tion” https://arxiv.org/abs/1611.03530

• Hastie et al. “Surprises in High-Dimensional Ridgeless Least Squares Inter-
polation” https://arxiv.org/abs/1903.08560

• Belkin et al. “Reconciling modern machine learning practice and the bias-
variance trade-off” https://arxiv.org/abs/1812.11118

• Belkin et al. “Fit without fear: remarkable mathematical phenomena of
deep learning through the prism of interpolation” https://arxiv.org/
abs/2105.14368

• Bubeck and Selke “A Universal Law of Robustness via Isoperimetry” https:
//arxiv.org/abs/2003.00307

• Lotfi et al. “PAC-Bayes Compression Bounds So Tight That They Can
Explain Generalization” https://arxiv.org/abs/2211.13609

84

https://arxiv.org/abs/1611.03530
https://arxiv.org/abs/1903.08560
https://arxiv.org/abs/1812.11118
https://arxiv.org/abs/2105.14368
https://arxiv.org/abs/2105.14368
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2003.00307
https://arxiv.org/abs/2211.13609

Bibliography
Bousquet, O., Boucheron, S., and Lugosi, G. (2004). Introduction to statistical

learning theory. Advanced Lectures on Machine Learning: ML Summer Schools
2003, Canberra, Australia, February 2-14, 2003, Tübingen, Germany, August
4-16, 2003, Revised Lectures, pages 169–207.

Goldberg, P. and Jerrum, M. (1993). Bounding the Vapnik-Chervonenkis dimen-
sion of concept classes parameterized by real numbers. In Proceedings of the
6th annual conference on Computational Learning Theory, pages 361–369.

Gühring, I., Raslan, M., and Kutyniok, G. (2020). Expressivity of deep neural
networks. arXiv preprint arXiv:2007.04759.

Mammen, E. and Tsybakov, A. B. (1999). Smooth discrimination analysis. The
Annals of Statistics, 27(6):1808–1829.

Van der Vaart, A. W. and Wellner, J. A. (1996). Weak convergence. Springer.

Vapnik, V. (1999). The nature of statistical learning theory. Springer science &
business media.

Vapnik, V. N. (1998). Statistical Learning Theory. Wiley-Interscience.

Vapnik, V. N. and Chervonenkis, A. Y. (1971). On the uniform convergence of
relative frequencies of events to their probabilities. Theory of Probability & Its
Applications, 16(2):264–280.

85

A. Common notation
symbol meaning
A ML algorithm
Dn = (Zi)n

i=1 training data set
L loss function
H hypothesis class
R(h) = EZ [L(Z, h(Z))] risk/test error of hypothesis h,
Rn(h) = 1

n

∑n
i=1 L(Zi, h(Zi))] empirical risk/training error of hypothesis h,

h arbitrary hypothesis
h0 = arg minh R(h) best possible hypothesis among all functions
h∗ = arg minh∈H R(h) best possible hypothesis in H
ĥ = A(Dn) hypothesis generated by ML algorithm
R(ĥ) −Rn(ĥ) generalization gap
Rn Rademacher complexity
R̂n empirical Rademacher complexity
N(ε,F , ‖ · ‖) covering number
lnnN(ε,F , ‖ · ‖) covering entropy

86

B. Mathematical preliminaries

B.1. Basic probability
Lemma B.1.1 (Law of iterated expectations/tower rule). For any random vari-
ables X,Y ,

E[E[Y | X]] = E[Y].

B.2. O-notation
Definition B.2.1. We write

(i) an = O(bn) (“an is big-O of bn”) if lim supn→∞ |an/bn| < ∞ .

(ii) an = o(bn) (“an is little-O of bn”) if limn→∞ |an/bn| = 0.

Interpretation:

• Case bn → 0:
– an = o(bn) means that an goes faster to zero than bn,
– an = O(bn) means that an goes at least as fast to zero as bn.

• Case bn → ∞:
– an = o(bn) means that an goes slower to ∞ than bn,
– an = O(bn) means that an goes at most as fast to ∞ as bn.

• Case bn = const.:
– an = o(1) means that an → 0,
– an = O(1) means that an is bounded.

B.3. Norms
Definition B.3.1 (Vector q-norm). For x ∈ Rd and q ∈ [1,∞], the q-norm is
defined as

‖x‖q =
(

d∑
j=1

|xj|q
)1/q

.

87

B. Mathematical preliminaries

The special case q = ∞ is understood as

‖x‖∞ = max
1≤j≤d

|xj|.

Definition B.3.2 (Lq(P)-norm). Let q ∈ [1,∞] and P be a measure. The
Lq(P)-norm of a function f : X → R is defined as

‖f‖L2(P) =
(
EP [|f(X)|q]

)1/q
=
(∫

|f(x)|qdP (x)
)1/q

.

Vector q-norms are a special case for P the counting measure.

B.4. Elementary inequalities
Lemma B.4.1 (Jensen’s inequality). For any convex function φ and random
variable X,

φ(E[X]) ≤ E[φ(X)].

For example, E[X]2 ≤ E[X2].

Lemma B.4.2 (Cauchy-Schwarz inequality). For vector space V with inner
product 〈·, ·〉 and norm ‖x‖ =

√
〈x, x〉, it holds

|〈x, y〉| ≤ ‖x‖‖y‖ for all x, y ∈ V.

Important special cases are:

• |x>y| ≤ ‖x‖2‖y‖2,

• |E[XY]| ≤
√
E[X2]E[Y 2].

Hölder’s inequality is a generalization that applies to specific inner product
spaces.

Lemma B.4.3 (Hölder’s inequality). Let q ∈ [1,∞] and p = q/(q− 1). Then for
any two random variables X,Y ∈ R,

E[|XY |] ≤
(
E[|X|p]

)1/p(
E[|Y |q]

)1/q
,

and any vectors x, y ∈ Rd,

|x>y| ≤ ‖x‖q‖y‖p.

88

	Introduction and overview
	Statistical learning theory
	Scope of this course
	Limitations
	These notes
	Outlook

	Theoretical framework
	Data, loss, and risk
	Examples
	Regression
	Classification
	Unsupervised learning
	And too many more

	The hypothesis class
	Empirical risk minimization (ERM)
	Probably approximately correct (PAC) learning
	There's no free lunch

	Preliminary bounds on the risk
	Risk decomposition
	Risk bounds
	The role of uniform convergence

	Bounds for finite hypothesis classes
	Main result
	The union bound
	Concentration of measure
	Motivation
	Basic tail bounds
	Hoeffding's inequality
	Sub-Gaussian random variables*

	Bounds for infinite hypothesis classes
	McDiarmid's inequality
	Rademacher complexity
	Definition and derivation
	Interpretation and properties
	Empirical Rademacher complexity

	Applications
	Penalized linear models
	Interpreting bounds and learning from proofs
	Ensembles
	Algorithms using basis approximation

	Covering numbers and entropy
	Definition
	Covering bound on the Rademacher complexity
	Euclidean function classes
	Chaining and the entropy integral
	Applications

	Vapnik-Chervonenkis dimension
	Some context
	Derivation
	Examples and Implications

	Further topics
	Fast rates
	Intuition
	Formal result
	When fast rates are possible
	Application

	Approximation error
	Pice-wise constant functions
	Exploiting higher-order smoothness
	The curse of dimensionality
	Exploiting sparsity
	The effectiveness of neural networks

	Lower bounds and minimax risk
	Motivation
	Definition
	Lower bounds for the minimax risk
	Some examples

	Closing remarks
	Common notation
	Mathematical preliminaries
	Basic probability
	O-notation
	Norms
	Elementary inequalities

