This function computes the theoretical Blomqvist's beta value of a bivariate copula for given parameter values.
BiCopPar2Beta(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
integer; single number or vector of size n
; defines the
bivariate copula family: 0
= independence copula 2
= Student t copula (t-copula) 1
= Gaussian copula 3
= Clayton copula 4
= Gumbel copula 5
= Frank copula 6
= Joe copula 7
= BB1 copula 8
= BB6 copula 9
= BB7 copula 10
= BB8 copula 13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'') 16
= rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees;
survival BB1'')18
= rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees;
survival BB7'')20
= rotated BB8 copula (180 degrees; ``survival BB8'')23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)
Note that the Student's t-copula is not allowed since the CDF of the t-copula
is not implemented (see BiCopCDF()
).
numeric; single number or vector of size n
; copula
parameter.
numeric; single number or vector of size n
; second
parameter for the two parameter BB1, BB6, BB7, BB8, Tawn type 1 and type 2
copulas (default: par2 = 0
).
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
Theoretical value of Blomqvist's beta corresponding to the bivariate
copula family
and parameter(s) par
, par2
.
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopPar2Beta(obj)
can be used.
The number n
can be chosen arbitrarily, but must agree across
arguments.
Blomqvist, N. (1950). On a measure of dependence between two random variables. The Annals of Mathematical Statistics, 21(4), 593-600.
Nelsen, R. (2006). An introduction to copulas. Springer
## Example 1: Gaussian copula
BiCopPar2Beta(family = 1, par = 0.7)
#> [1] 0.4936334
BiCop(1, 0.7)$beta # alternative
#> [1] 0.4936334
## Example 2: Clayton copula
BiCopPar2Beta(family = 3, par = 2)
#> [1] 0.5118579
## Example 3: different copula families
BiCopPar2Beta(family = c(3,4,6), par = 2:4)
#> [1] 0.5118579 0.6702672 0.6403889