This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.
BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)
integer; single number or vector of size n
; defines the
bivariate copula family: 0
= independence copula 1
= Gaussian copula 2
= Student t copula (t-copula) 3
= Clayton copula 4
= Gumbel copula 5
= Frank copula 6
= Joe copula 7
= BB1 copula 8
= BB6 copula 9
= BB7 copula 10
= BB8 copula 13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'') 16
= rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees;
survival BB1'')18
= rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees;
survival BB7'')20
= rotated BB8 copula (180 degrees; ``survival BB8'')23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)
numeric; single number or vector of size n
; copula parameter.
numeric; single number or vector of size n
; second
parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8,
Tawn type 1 and type 2; default: par2 = 0
). par2
should be an
positive integer for the Students's t copula family = 2
.
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
Lower tail dependence coefficient for the given
bivariate copula family
and parameter(s) par
, par2
:
$$ \lambda_L = \lim_{u\searrow 0}\frac{C(u,u)}{u} $$
Upper tail dependence coefficient for the given bivariate
copula family family
and parameter(s) par
, par2
:
$$ \lambda_U = \lim_{u\nearrow 1}\frac{1-2u+C(u,u)}{1-u} $$
Lower and upper tail dependence coefficients for bivariate copula families and parameters (\(\theta\) for one parameter families and the first parameter of the t-copula with \(\nu\) degrees of freedom, \(\theta\) and \(\delta\) for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.
No. | Lower tail dependence | Upper tail dependence |
1 | - | - |
2 | \(2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)\) | \(2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)\) |
3 | \(2^{-1/\theta}\) | - |
4 | - | \(2-2^{1/\theta}\) |
5 | - | - |
6 | - | \(2-2^{1/\theta}\) |
7 | \(2^{-1/(\theta\delta)}\) | \(2-2^{1/\delta}\) |
8 | - | \(2-2^{1/(\theta\delta)}\) |
9 | \(2^{-1/\delta}\) | \(2-2^{1/\theta}\) |
10 | - | \(2-2^{1/\theta}\) if \(\delta=1\) otherwise 0 |
13 | - | \(2^{-1/\theta}\) |
14 | \(2-2^{1/\theta}\) | - |
16 | \(2-2^{1/\theta}\) | - |
17 | \(2-2^{1/\delta}\) | \(2^{-1/(\theta\delta)}\) |
18 | \(2-2^{1/(\theta\delta)}\) | - |
19 | \(2-2^{1/\theta}\) | \(2^{-1/\delta}\) |
20 | \(2-2^{1/\theta}\) if \(\delta=1\) otherwise 0 | - |
23, 33 | - | - |
24, 34 | - | - |
26, 36 | - | - |
27, 37 | - | - |
28, 38 | - | - |
29, 39 | - | - |
30, 40 | - | - |
104,204 | - | \(\delta+1-(\delta^{\theta}+1)^{1/\theta}\) |
114, 214 | \(1+\delta-(\delta^{\theta}+1)^{1/\theta}\) | - |
124, 224 | - | - |
134, 234 | - | - |
If the family and parameter specification is stored in a BiCop
object
obj
, the alternative version
BiCopPar2TailDep(obj)
can be used.
The number n
can be chosen arbitrarily, but must agree across
arguments.
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.
## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
#> $lower
#> [1] 0
#>
#> $upper
#> [1] 0
#>
BiCop(1, 0.7)$taildep # alternative
#> $lower
#> [1] 0
#>
#> $upper
#> [1] 0
#>
## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)
#> $lower
#> [1] 0.3143726 0.3906840 0.4895897
#>
#> $upper
#> [1] 0.3143726 0.3906840 0.4895897
#>
## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)
#> $lower
#> [1] 0.7071068 0.0000000 0.0000000
#>
#> $upper
#> [1] 0.0000000 0.5857864 0.5857864
#>