This function computes the theoretical tail dependence coefficients of a bivariate copula for given parameter values.

BiCopPar2TailDep(family, par, par2 = 0, obj = NULL, check.pars = TRUE)

Arguments

family

integer; single number or vector of size n; defines the bivariate copula family:
0 = independence copula
1 = Gaussian copula
2 = Student t copula (t-copula)
3 = Clayton copula
4 = Gumbel copula
5 = Frank copula
6 = Joe copula
7 = BB1 copula
8 = BB6 copula
9 = BB7 copula
10 = BB8 copula
13 = rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees; survival Gumbel'')
16 = rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees; survival BB1'')
18 = rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees; survival BB7'')
20 = rotated BB8 copula (180 degrees; ``survival BB8'')
23 = rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)

par

numeric; single number or vector of size n; copula parameter.

par2

numeric; single number or vector of size n; second parameter for bivariate copulas with two parameters (t, BB1, BB6, BB7, BB8, Tawn type 1 and type 2; default: par2 = 0). par2 should be an positive integer for the Students's t copula family = 2.

obj

BiCop object containing the family and parameter specification.

check.pars

logical; default is TRUE; if FALSE, checks for family/parameter-consistency are omitted (should only be used with care).

Value

lower

Lower tail dependence coefficient for the given bivariate copula family and parameter(s) par, par2: $$ \lambda_L = \lim_{u\searrow 0}\frac{C(u,u)}{u} $$

upper

Upper tail dependence coefficient for the given bivariate copula family family and parameter(s) par, par2: $$ \lambda_U = \lim_{u\nearrow 1}\frac{1-2u+C(u,u)}{1-u} $$

Lower and upper tail dependence coefficients for bivariate copula families and parameters (\(\theta\) for one parameter families and the first parameter of the t-copula with \(\nu\) degrees of freedom, \(\theta\) and \(\delta\) for the two parameter BB1, BB6, BB7 and BB8 copulas) are given in the following table.

No.Lower tail dependenceUpper tail dependence
1--
2\(2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)\)\(2t_{\nu+1}\left(-\sqrt{\nu+1}\sqrt{\frac{1-\theta}{1+\theta}}\right)\)
3\(2^{-1/\theta}\)-
4-\(2-2^{1/\theta}\)
5--
6-\(2-2^{1/\theta}\)
7\(2^{-1/(\theta\delta)}\)\(2-2^{1/\delta}\)
8-\(2-2^{1/(\theta\delta)}\)
9\(2^{-1/\delta}\)\(2-2^{1/\theta}\)
10-\(2-2^{1/\theta}\) if \(\delta=1\) otherwise 0
13-\(2^{-1/\theta}\)
14\(2-2^{1/\theta}\)-
16\(2-2^{1/\theta}\)-
17\(2-2^{1/\delta}\)\(2^{-1/(\theta\delta)}\)
18\(2-2^{1/(\theta\delta)}\)-
19\(2-2^{1/\theta}\)\(2^{-1/\delta}\)
20\(2-2^{1/\theta}\) if \(\delta=1\) otherwise 0-
23, 33--
24, 34--
26, 36--
27, 37--
28, 38--
29, 39--
30, 40--
104,204-\(\delta+1-(\delta^{\theta}+1)^{1/\theta}\)
114, 214\(1+\delta-(\delta^{\theta}+1)^{1/\theta}\)-
124, 224--
134, 234--

Details

If the family and parameter specification is stored in a BiCop object obj, the alternative version

can be used.

Note

The number n can be chosen arbitrarily, but must agree across arguments.

References

Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman and Hall, London.

See also

Author

Eike Brechmann

Examples

## Example 1: Gaussian copula
BiCopPar2TailDep(1, 0.7)
#> $lower
#> [1] 0
#> 
#> $upper
#> [1] 0
#> 
BiCop(1, 0.7)$taildep  # alternative
#> $lower
#> [1] 0
#> 
#> $upper
#> [1] 0
#> 

## Example 2: Student-t copula
BiCopPar2TailDep(2, c(0.6, 0.7, 0.8), 4)
#> $lower
#> [1] 0.3143726 0.3906840 0.4895897
#> 
#> $upper
#> [1] 0.3143726 0.3906840 0.4895897
#> 

## Example 3: different copula families
BiCopPar2TailDep(c(3, 4, 6), 2)
#> $lower
#> [1] 0.7071068 0.0000000 0.0000000
#> 
#> $upper
#> [1] 0.0000000 0.5857864 0.5857864
#>