Note: This function is deprecated and only available for backwards
compatibility. See contour.BiCop()
for contour plots of
parametric copulas, and BiCopKDE()
for kernel estimates.
BiCopMetaContour(
u1 = NULL,
u2 = NULL,
bw = 1,
size = 100,
levels = c(0.01, 0.05, 0.1, 0.15, 0.2),
family = "emp",
par = 0,
par2 = 0,
PLOT = TRUE,
margins = "norm",
margins.par = 0,
xylim = NA,
obj = NULL,
...
)
Data vectors of equal length with values in \([0,1]\) (default:
u1
and u2 = NULL
).
Bandwidth (smoothing factor; default: bw = 1
).
Number of grid points; default: size = 100
.
Vector of contour levels. For Gaussian, Student-t or
exponential margins the default value (levels = c(0.01, 0.05, 0.1, 0.15, 0.2)
) typically is a good choice. For uniform margins we
recommendlevels = c(0.1, 0.3, 0.5, 0.7, 0.9, 1.1, 1.3, 1.5)
and for Gamma marginslevels = c(0.005, 0.01, 0.03, 0.05, 0.07, 0.09)
.
An integer defining the bivariate copula family or indicating
an empirical contour plot: "emp"
= empirical contour plot
(default; margins can be specified by margins
) 0
= independence copula 1
= Gaussian copula 2
= Student t copula (t-copula) 3
= Clayton copula 4
= Gumbel copula 5
= Frank copula 6
= Joe copula 7
= BB1 copula 8
= BB6 copula 9
= BB7 copula 10
= BB8 copula 13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'') 16
= rotated Joe copula (180 degrees; survival Joe'') \cr `17` = rotated BB1 copula (180 degrees;
survival BB1'')18
= rotated BB6 copula (180 degrees; survival BB6'')\cr `19` = rotated BB7 copula (180 degrees;
survival BB7'')20
= rotated BB8 copula (180 degrees; ``survival BB8'')23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`27` = rotated BB1 copula (90 degrees)
`28` = rotated BB6 copula (90 degrees)
`29` = rotated BB7 copula (90 degrees)
`30` = rotated BB8 copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
`37` = rotated BB1 copula (270 degrees)
`38` = rotated BB6 copula (270 degrees)
`39` = rotated BB7 copula (270 degrees)
`40` = rotated BB8 copula (270 degrees)
`104` = Tawn type 1 copula
`114` = rotated Tawn type 1 copula (180 degrees)
`124` = rotated Tawn type 1 copula (90 degrees)
`134` = rotated Tawn type 1 copula (270 degrees)
`204` = Tawn type 2 copula
`214` = rotated Tawn type 2 copula (180 degrees)
`224` = rotated Tawn type 2 copula (90 degrees)
`234` = rotated Tawn type 2 copula (270 degrees)
Copula parameter; if empirical contour plot, par = NULL
or
0
(default).
Second copula parameter for t-, BB1, BB6, BB7, BB8, Tawn type 1
and type 2 copulas (default: par2 = 0
).
Logical; whether the results are plotted. If PLOT = FALSE
, the values x
, y
and z
are returned (see below;
default: PLOT = TRUE
).
Character; margins for the bivariate copula contour plot.
Possible margins are:"norm"
= standard normal margins (default)"t"
= Student t margins with degrees of freedom as
specified by margins.par
"gamma"
= Gamma margins with shape and scale as
specified by margins.par
"exp"
= Exponential margins with rate as
specified by margins.par
"unif"
= uniform margins
Parameter(s) of the distribution of the margins if
necessary (default: margins.par = 0
), i.e.,
A 2-dimensional vector of the x- and y-limits. By default
(xylim = NA
) standard limits for the selected margins are used.
BiCop
object containing the family and parameter
specification.
Additional plot arguments.
A vector of length size
with the x-values of the
kernel density estimator with Gaussian kernel if the empirical contour plot
is chosen and a sequence of values in xylim
if the theoretical
contour plot is chosen.
A vector of length size
with the
y-values of the kernel density estimator with Gaussian kernel if the
empirical contour plot is chosen and a sequence of values in xylim
if
the theoretical contour plot is chosen.
A matrix of dimension
size
with the values of the density of the meta distribution with
chosen margins (see margins
and margins.par
) evaluated at the
grid points given by x
and y
.
The combination family = 0
(independence copula) and
margins = "unif"
(uniform margins) is not possible because all
z
-values are equal.
## meta Clayton distribution with Gaussian margins
cop <- BiCop(family = 1, tau = 0.5)
BiCopMetaContour(obj = cop, main = "Clayton - normal margins")
#> Warning: This function is deprecated. See ?contour.BiCop for contour plots of parametric copulas
#> and ?BiCopKDE for kernel estimates.
# better:
contour(cop, main = "Clayton - normal margins")
## empirical contour plot with standard normal margins
dat <- BiCopSim(1000, cop)
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2, family = "emp",
main = "empirical - normal margins")
#> Warning: This function is deprecated. See ?contour.BiCop for contour plots of parametric copulas
#> and ?BiCopKDE for kernel estimates.
# better:
BiCopKDE(dat[, 1], dat[, 2],
main = "empirical - normal margins")
## empirical contour plot with exponential margins
BiCopMetaContour(dat[, 1], dat[, 2], bw = 2,
main = "empirical - exponential margins",
margins = "exp", margins.par = 1)
#> Warning: This function is deprecated. See ?contour.BiCop for contour plots of parametric copulas
#> and ?BiCopKDE for kernel estimates.
# better:
BiCopKDE(dat[, 1], dat[, 2],
main = "empirical - exponential margins",
margins = "exp")