A vine copula density estimate (stored in a kdevinecop
object)
can be evaluated on arbitrary points with dkevinecop
. Furthermore,
you can simulate from the estimated density with rkdevinecop
.
dkdevinecop(u, obj, stable = FALSE)
rkdevinecop(n, obj, U = NULL, quasi = FALSE)
\(m x 2\) matrix of evaluation points.
kdevinecop
object.
logical; option for stabilizing the estimator: the estimated pair copula density is cut off at \(50\).
integer; number of observations.
(optional) \(n x d\) matrix of independent uniform random variables.
logical; the default (FALSE
) returns pseudo-random
numbers, use TRUE
for quasi-random numbers (generalized Halton, see
ghalton
).
A numeric vector of the density/cdf or a \(n x 2\) matrix of simulated data.
Nagler, T., Czado, C. (2016)
Evading the curse of dimensionality in nonparametric density estimation.
Journal of Multivariate Analysis 151, 69-89 (doi:10.1016/j.jmva.2016.07.003)
Dissmann, J., Brechmann, E. C., Czado, C., and Kurowicka, D. (2013).
Selecting and estimating regular vine copulae and application to financial returns.
Computational Statistics & Data Analysis, 59(0):52--69.
data(wdbc, package = "kdecopula") # load data
u <- VineCopula::pobs(wdbc[, 5:7], ties = "average") # rank-transform
fit <- kdevinecop(u) # estimate density
dkdevinecop(c(0.1, 0.1, 0.1), fit) # evaluate density estimate
#> [1] 3.199711