Implements the vine-copula based estimator of Nagler and Czado (2016). The
marginal densities are estimated by kde1d
, the vine copula
density by kdevinecop
. Discrete variables are convoluted with
the uniform distribution (see, Nagler, 2017). If a variable should be treated
as discrete, declare it as ordered()
. Factors are expanded into binary
dummy codes.
kdevine(x, mult_1d = NULL, xmin = NULL, xmax = NULL, copula.type = "kde", ...)
(\(n x d\)) data matrix.
numeric; all bandwidhts for marginal kernel density estimation
are multiplied with mult_1d
. Defaults to log(1 + d)
where d
is
the number of variables after applying cctools::expand_as_numeric()
.
numeric vector of length d; see kde1d
.
numeric vector of length d; see kde1d
.
either "kde"
(default) or "parametric"
for
kernel or parametric estimation of the vine copula.
further arguments passed to kde1d
or
kdevinecop
.
An object of class kdevine
.
Nagler, T., Czado, C. (2016) Evading the curse of
dimensionality in nonparametric density estimation with simplified vine
copulas. Journal of Multivariate Analysis 151, 69-89
(doi:10.1016/j.jmva.2016.07.003)
Nagler, T. (2017). A generic approach to nonparametric function
estimation with mixed data. arXiv:1704.07457
# load data
data(wdbc, package = "kdecopula")
wdbc <- wdbc[1:30, ]
# estimate density (use xmin to indicate positive support)
fit <- kdevine(wdbc[, 5:7], xmin = rep(0, 3))
# evaluate density estimate
dkdevine(c(1000, 0.1, 0.1), fit)
#> [1] 0.1923682
# plot simulated data
pairs(rkdevine(nrow(wdbc), fit))