Weighted dependence measures. More...
Classes | |
class | Indep_test |
Functions | |
double | wdm (const Eigen::VectorXd &x, const Eigen::VectorXd &y, std::string method, Eigen::VectorXd weights=Eigen::VectorXd(), bool remove_missing=true) |
Eigen::MatrixXd | wdm (const Eigen::MatrixXd &x, std::string method, Eigen::VectorXd weights=Eigen::VectorXd(), bool remove_missing=true) |
double | wdm (std::vector< double > x, std::vector< double > y, std::string method, std::vector< double > weights=std::vector< double >(), bool remove_missing=true) |
Detailed Description
Weighted dependence measures.
Function Documentation
|
inline |
calculates (weighted) dependence measures.
- Parameters
-
x,y input data. method the dependence measure; see details for possible values. weights an optional vector of weights for the data. remove_missing if true
, all observations containing anan
are removed; otherwise throws an error ifnan
s are present.
Available methods:
"pearson"
,"prho"
,"cor"
: Pearson correlation"spearman"
,"srho"
,"rho"
: Spearman's \( \rho \)"kendall"
,"ktau"
,"tau"
: Kendall's \( \tau \)"blomqvist"
,"bbeta"
,"beta"
: Blomqvist's \( \beta \)"hoeffding"
,"hoeffd"
,"d"
: Hoeffding's \( D \)
- Returns
- the dependence measure
|
inline |
calculates (weighted) dependence measures.
- Parameters
-
x,y input data. method the dependence measure; see details for possible values. weights an optional vector of weights for the data. remove_missing if true
, all observations containing anan
are removed; otherwise throws an error ifnan
s are present.
Available methods:
"pearson"
,"prho"
,"cor"
: Pearson correlation"spearman"
,"srho"
,"rho"
: Spearman's \( \rho \)"kendall"
,"ktau"
,"tau"
: Kendall's \( \tau \)"blomqvist"
,"bbeta"
,"beta"
: Blomqvist's \( \beta \)"hoeffding"
,"hoeffd"
,"d"
: Hoeffding's \( D \)
- Returns
- the dependence measure
|
inline |
calculates a matrix of (weighted) dependence measures.
- Parameters
-
x input data. method the dependence measure; see details for possible values. weights an optional vector of weights for the data. remove_missing if true
, all observations containing anan
are removed; otherwise throws an error ifnan
s are present.
Available methods:
"pearson"
,"prho"
,"cor"
: Pearson correlation"spearman"
,"srho"
,"rho"
: Spearman's \( \rho \)"kendall"
,"ktau"
,"tau"
: Kendall's \( \tau \)"blomqvist"
,"bbeta"
,"beta"
: Blomqvist's \( \beta \)"hoeffding"
,"hoeffd"
,"d"
: Hoeffding's \( D \)
- Returns
- a matrix of pairwise dependence measures.