This function evaluates the derivative of a given conditional parametric bivariate copula (h-function) with respect to its parameter(s) or one of its arguments.
BiCopHfuncDeriv(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
obj = NULL,
check.pars = TRUE
)
numeric vectors of equal length with values in \([0,1]\).
integer; single number or vector of size length(u1)
;
defines the bivariate copula family: \ 0
= independence copula 1
= Gaussian copula 2
= Student t copula (t-copula) 3
= Clayton copula 4
= Gumbel copula 5
= Frank copula 6
= Joe copula 13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'') 16
= rotated Joe copula (180 degrees; ``survival Joe'') 23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
numeric; single number or vector of size length(u1)
;
copula parameter.
integer; single number or vector of size length(u1)
;
second parameter for the t-Copula; default is par2 = 0
, should be an
positive integer for the Students's t copula family = 2
.
Derivative argument "par"
= derivative with respect to the first parameter (default)"par2"
= derivative with respect to the second parameter
(only available for the t-copula) "u2"
= derivative with respect to the second argument u2
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
A numeric vector of the conditional bivariate copula derivative
of the copula family
,
with parameter(s) par
, par2
,
with respect to deriv
,
evaluated at u1
and u2
.
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopHfuncDeriv(u1, u2, obj, deriv = "par")
can be used.
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
RVineGrad()
, RVineHessian()
,
BiCopDeriv2()
, BiCopDeriv2()
,
BiCopHfuncDeriv()
, BiCop()
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## derivative of the conditional Student-t copula
## with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopHfuncDeriv(u1, u2, cop, deriv = "par")
#> [1] -0.598879576 -0.694092965 1.101459131 -0.579894656 0.085143765
#> [6] 0.045263264 -0.124492828 -0.914662735 0.264757455 -0.809827056
#> [11] -0.144991103 -0.316577613 -0.320545869 -0.179146455 0.366497913
#> [16] -0.040173353 -0.369191559 0.014361201 0.592846659 0.359471850
#> [21] 0.097449063 0.237241992 0.198754672 0.053242904 -0.754926562
#> [26] 0.041462568 0.827360291 0.553869372 -0.490998434 0.190831164
#> [31] 0.783682679 0.362917733 0.082694956 -0.249834704 0.101055634
#> [36] -0.182089378 0.526243348 0.485013788 -0.222883303 0.440803641
#> [41] -0.326582560 -0.555969332 0.065956789 -0.017284873 0.684402406
#> [46] -0.257875035 -0.312641751 0.388477301 0.879453107 -0.022534107
#> [51] 0.332678724 -0.608878940 -0.627556644 -0.089561930 0.498852955
#> [56] 0.312101882 -1.081332576 0.748299526 -0.531491828 0.188438376
#> [61] 0.361629504 0.358745853 -0.684002542 0.183017895 -0.343785307
#> [66] -0.475266389 -0.339675659 -0.300649893 -0.234121611 0.049913733
#> [71] 0.150418584 0.024234911 0.543959731 0.284837078 -0.472009315
#> [76] 0.003428686 0.397520877 0.103865304 0.542623800 0.467659350
#> [81] 0.280493267 0.247487710 -0.064071355 0.581023237 0.389754707
#> [86] 0.626662199 -0.183429912 -0.196256827 -0.057137349 -0.087889506
#> [91] 0.346188362 0.480466113 0.036183653 -0.117217329 -0.100535310
#> [96] 0.249183916 -0.042171143 0.035366213 -0.316293586 -0.113213738
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate the derivative of the conditional copula
## w.r.t. the second argument u2
BiCopHfuncDeriv(u1, u2, cop, deriv = "u2")
#> [1] 1.79447650 1.31470857 13.03395287 0.86271682 1.23809501 2.02019394
#> [7] 1.09848608 5.48491776 0.18740720 1.79948157 0.56911364 0.26109840
#> [13] 0.89484041 1.17333442 0.50274380 0.03684953 0.66568767 1.72064677
#> [19] 2.01643095 0.73752649 0.94338835 1.10066056 0.24283230 1.13387800
#> [25] 2.09500861 1.15486819 2.81668724 1.25450701 2.76713621 2.02034154
#> [31] 1.70821289 0.93373006 1.40199879 0.40717098 1.40692015 0.91574777
#> [37] 3.50334420 1.04446990 1.32684648 0.55343129 1.65635905 1.31878627
#> [43] 1.01066448 0.02232976 3.76128149 2.03093842 1.42168426 0.65291374
#> [49] 2.79424972 1.22447834 1.33567334 0.85060968 1.01564132 0.83251806
#> [55] 0.77236168 3.28769808 12.02997009 1.99958543 0.63784108 1.28120398
#> [61] 1.43194157 0.69388625 1.45565408 0.15921374 2.18176190 0.61530785
#> [67] 0.81399751 1.15659029 0.44459111 3.07430311 1.05949158 0.10664951
#> [73] 2.56053697 0.25406270 1.83385232 1.25601348 0.89696876 0.83910056
#> [79] 1.28947804 0.97209805 1.19471820 1.37493034 1.26104911 1.90545823
#> [85] 0.97276630 1.48289536 0.46610225 1.03082755 1.25200565 0.94808684
#> [91] 2.05443974 1.66980487 1.23515300 1.36177865 0.08808345 0.84517734
#> [97] 1.05424206 1.67313352 1.32112674 1.53980743