This function evaluates the derivative of a given parametric bivariate copula density with respect to its parameter(s) or one of its arguments.
BiCopDeriv(
u1,
u2,
family,
par,
par2 = 0,
deriv = "par",
log = FALSE,
obj = NULL,
check.pars = TRUE
)
numeric vectors of equal length with values in \([0,1]\).
integer; single number or vector of size length(u1)
;
defines the bivariate copula family: 0
= independence copula 1
= Gaussian copula 2
= Student t copula (t-copula) 3
= Clayton copula 4
= Gumbel copula 5
= Frank copula 6
= Joe copula 13
= rotated Clayton copula (180 degrees; survival Clayton'') \cr `14` = rotated Gumbel copula (180 degrees;
survival Gumbel'') 16
= rotated Joe copula (180 degrees; ``survival Joe'') 23
= rotated Clayton copula (90 degrees)
`24` = rotated Gumbel copula (90 degrees)
`26` = rotated Joe copula (90 degrees)
`33` = rotated Clayton copula (270 degrees)
`34` = rotated Gumbel copula (270 degrees)
`36` = rotated Joe copula (270 degrees)
numeric; single number or vector of size length(u1)
;
copula parameter.
integer; single number or vector of size length(u1)
;
second parameter for the t-Copula; default is par2 = 0
, should be an
positive integer for the Students's t copula family = 2
.
Derivative argument "par"
= derivative with respect to the first parameter (default)"par2"
= derivative with respect to the second parameter
(only available for the t-copula) "u1"
= derivative with respect to the first argument u1
"u2"
= derivative with respect to the second argument u2
Logical; if TRUE
than the derivative of the log-likelihood
is returned (default: log = FALSE
; only available for the derivatives
with respect to the parameter(s) (deriv = "par"
or deriv = "par2"
)).
BiCop
object containing the family and parameter
specification.
logical; default is TRUE
; if FALSE
, checks
for family/parameter-consistency are omitted (should only be used with
care).
A numeric vector of the bivariate copula derivative
of the copula family
with parameter(s) par
, par2
with respect to deriv
,
evaluated at u1
and u2
.
If the family and parameter specification is stored in a BiCop()
object obj
, the alternative version
BiCopDeriv(u1, u2, obj, deriv = "par", log = FALSE)
can be used.
Schepsmeier, U. and J. Stoeber (2014). Derivatives and Fisher
information of bivariate copulas. Statistical Papers, 55 (2), 525-542.
https://link.springer.com/article/10.1007/s00362-013-0498-x.
## simulate from a bivariate Student-t copula
set.seed(123)
cop <- BiCop(family = 2, par = -0.7, par2 = 4)
simdata <- BiCopSim(100, cop)
## derivative of the bivariate t-copula with respect to the first parameter
u1 <- simdata[,1]
u2 <- simdata[,2]
BiCopDeriv(u1, u2, cop, deriv = "par")
#> [1] -1.9491194 0.4287700 -2.1243812 0.9894915 -2.2047080 -6.8875898
#> [7] -1.7649804 -3.9093168 1.3918512 1.3725159 0.2610399 1.0257608
#> [13] -0.5194076 -1.8585951 1.1101953 1.4226641 0.5365931 -5.3960728
#> [19] -2.6089908 0.2241644 -1.4657837 -1.4961593 1.4470699 -2.1020266
#> [25] -1.1124191 -2.5897270 -1.5904825 -0.6383240 -5.7165568 -5.6223032
#> [31] 0.4260070 -0.5006696 -3.1947709 1.0966700 -3.1221788 -1.0528469
#> [37] 1.0715588 -0.3303013 -2.3240436 1.2326288 -3.2262827 -0.8370149
#> [43] -1.8759344 1.5173806 -5.7398194 -5.1544035 -2.4041889 0.6624840
#> [49] -0.5309243 -2.1865130 -2.0200902 1.4910194 0.8285610 -1.0259934
#> [55] 0.7598523 -9.7957033 -3.0055312 -0.9632466 1.4953758 -2.2232271
#> [61] -2.2474680 0.3882322 1.6554248 1.4807135 -5.1011095 1.1948755
#> [67] -0.1451278 -1.5037080 0.9329069 -12.6765803 -1.5942166 2.7522270
#> [73] -4.5559148 1.4717988 -2.9951774 -2.8088077 -0.2201730 -1.0321698
#> [79] -0.8301523 -0.1610222 -1.6934311 -2.4458507 -2.3632248 -2.4039404
#> [85] -0.5327412 -0.8140025 0.7503848 -1.3836944 -2.3199687 -1.5293709
#> [91] -4.6053130 -2.4260304 -2.2459406 -2.7919755 1.4777421 -0.5824266
#> [97] -0.7432825 -5.0724114 -2.0257408 -3.7867954
## estimate a Student-t copula for the simulated data
cop <- BiCopEst(u1, u2, family = 2)
## and evaluate its derivative w.r.t. the second argument u2
BiCopDeriv(u1, u2, cop, deriv = "u2")
#> [1] -2.572532e+00 -4.713478e+00 7.764411e+01 -3.893079e+00 -7.353974e-03
#> [6] -4.110736e+01 -2.684368e+00 -1.267933e+01 1.685358e+00 -8.459042e+00
#> [11] -6.926049e+00 -1.906637e+00 -3.246016e+00 -1.497334e+00 3.179740e+00
#> [16] -1.710293e+00 -3.452148e+00 7.169778e+01 1.938487e+00 3.468987e+00
#> [21] 7.040024e+00 2.231633e+00 2.839713e+00 3.959213e+00 -5.047145e+00
#> [26] 2.727019e+01 6.875954e+00 3.205492e+00 4.514724e+00 -1.164073e+01
#> [31] 6.172279e+00 3.107522e+00 -4.920490e+00 -3.555590e+00 -4.025224e+00
#> [36] -4.033415e+00 2.305999e+01 3.179083e+00 -1.390712e-01 3.184211e+00
#> [41] 1.159594e+00 -3.091015e+00 1.035754e+01 -2.430187e+00 -6.185534e-01
#> [46] 7.499612e+00 -3.649171e-01 3.402683e+00 8.991486e+00 1.994543e-01
#> [51] 1.129617e+00 -4.501232e+00 -4.211597e+00 -1.132991e+01 3.504455e+00
#> [56] -2.589459e+01 -6.284932e+01 4.967663e+00 -3.640092e+00 2.873912e-01
#> [61] 8.523196e-01 3.485461e+00 -8.261592e+00 1.980008e+00 5.480990e+00
#> [66] -3.326240e+00 -3.415811e+00 -2.004110e+00 -3.941866e+00 -1.337753e+02
#> [71] 2.949049e+00 1.545911e+01 -1.267314e+00 2.197841e+00 -4.088047e-01
#> [76] -6.860913e+00 3.223230e+00 8.691908e+00 3.035431e+00 3.243113e+00
#> [81] 1.674844e+00 -4.167429e-02 1.192042e+00 2.017697e+00 3.029543e+00
#> [86] 3.543877e+00 -5.031280e+00 -2.895037e+00 1.023711e+00 -8.116307e+00
#> [91] -4.105862e+00 1.220534e+00 -7.622173e-01 2.320207e+00 -1.836715e+00
#> [96] 3.725500e+00 -8.778278e+01 -2.352367e+01 -1.078140e+00 6.589028e+00